Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 24(1): 4-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36028773

RESUMEN

Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.


Asunto(s)
Ritmo Circadiano , Sueño , Humanos , Ritmo Circadiano/genética , Sueño/genética , Fenotipo
2.
Proc Natl Acad Sci U S A ; 121(9): e2214756121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38394243

RESUMEN

Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.


Asunto(s)
Trastornos Mentales , Trastornos del Sueño-Vigilia , Adulto Joven , Adolescente , Humanos , Trastornos Mentales/etiología , Trastornos Mentales/terapia , Sueño/fisiología , Ritmo Circadiano/fisiología , Salud Mental , Trastornos del Humor
3.
Circ Res ; 134(6): 810-832, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484034

RESUMEN

Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Adulto , Humanos , Presión Sanguínea/fisiología , Ritmo Circadiano , Corazón
4.
Proc Natl Acad Sci U S A ; 119(38): e2206348119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095195

RESUMEN

Shift workers have a 25 to 40% higher risk of depression and anxiety partly due to a misalignment between the central circadian clock and daily environmental/behavioral cycles that may negatively affect mood and emotional well-being. Hence, evidence-based circadian interventions are required to prevent mood vulnerability in shift work settings. We used a stringently controlled 14-d circadian paradigm to assess mood vulnerability during simulated night work with either daytime and nighttime or daytime-only eating as compared with simulated day work (baseline). Simulated night work with daytime and nighttime eating increased depression-like mood levels by 26.2% (p-value adjusted using False Discovery Rates, pFDR = 0.001; effect-size r = 0.78) and anxiety-like mood levels by 16.1% (pFDR = 0.001; effect-size r = 0.47) compared to baseline, whereas this did not occur with simulated night work in the daytime-only eating group. Importantly, a larger degree of internal circadian misalignment was robustly associated with more depression-like (r = 0.77; P = 0.001) and anxiety-like (r = 0.67; P = 0.002) mood levels during simulated night work. These findings offer a proof-of-concept demonstration of an evidence-based meal timing intervention that may prevent mood vulnerability in shift work settings. Future studies are required to establish if changes in meal timing can prevent mood vulnerability in night workers.


Asunto(s)
Ansiedad , Relojes Circadianos , Trastorno Depresivo , Comidas , Horario de Trabajo por Turnos , Tolerancia al Trabajo Programado , Adulto , Ansiedad/prevención & control , Ritmo Circadiano , Trastorno Depresivo/prevención & control , Femenino , Humanos , Masculino , Comidas/psicología , Horario de Trabajo por Turnos/psicología , Tolerancia al Trabajo Programado/psicología , Adulto Joven
5.
Int J Obes (Lond) ; 48(5): 694-701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267484

RESUMEN

BACKGROUND: While environmental factors play an important role in weight loss effectiveness, genetics may also influence its success. We examined whether a genome-wide polygenic score for BMI was associated with weight loss effectiveness and aimed to identify common genetic variants associated with weight loss. METHODS: Participants in the ONTIME study (n = 1210) followed a uniform, multimodal behavioral weight-loss intervention. We first tested associations between a genome-wide polygenic score for higher BMI and weight loss effectiveness (total weight loss, rate of weight loss, and attrition). We then conducted a genome-wide association study (GWAS) for weight loss in the ONTIME study and performed the largest weight loss meta-analysis with earlier studies (n = 3056). Lastly, we ran exploratory GWAS in the ONTIME study for other weight loss outcomes and related factors. RESULTS: We found that each standard deviation increment in the polygenic score was associated with a decrease in the rate of weight loss (Beta (95% CI) = -0.04 kg per week (-0.06, -0.01); P = 3.7 × 10-03) and with higher attrition after adjusting by treatment duration. No associations reached genome-wide significance in meta-analysis with previous GWAS studies for weight loss. However, associations in the ONTIME study showed effects consistent with published studies for rs545936 (MIR486/NKX6.3/ANK1), a previously noted weight loss locus. In the meta-analysis, each copy of the minor A allele was associated with 0.12 (0.03) kg/m2 higher BMI at week five of treatment (P = 3.9 × 10-06). In the ONTIME study, we also identified two genome-wide significant (P < 5×10-08) loci for the rate of weight loss near genes implicated in lipolysis, body weight, and metabolic regulation: rs146905606 near NFIP1/SPRY4/FGF1; and rs151313458 near LSAMP. CONCLUSION: Our findings are expected to help in developing personalized weight loss approaches based on genetics. CLINICAL TRIAL REGISTRATION: Obesity, Nutrigenetics, Timing, and Mediterranean (ONTIME; clinicaltrials.gov: NCT02829619) study.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad , Pérdida de Peso , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Herencia Multifactorial/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple , Pérdida de Peso/genética
6.
Ann Neurol ; 93(6): 1145-1157, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808743

RESUMEN

OBJECTIVE: Delirium is a complex neurocognitive syndrome suspected to be bidirectionally linked to dementia. Circadian rhythm disturbances likely contribute to dementia pathogenesis, but whether these disturbances are related to delirium risk and progression to all-cause dementia is unknown. METHODS: We analyzed continuous actigraphy data from 53,417 middle-aged or older UK Biobank participants during a median 5 years of follow-up. Four measures were used to characterize the 24-hour daily rest-activity rhythms (RARs): normalized amplitude, acrophase representing the peak activity time, interdaily stability, and intradaily variability (IV) for fragmentation of the rhythm. Cox proportional hazards models examined whether RARs predicted incident delirium (n = 551) and progression to dementia (n = 61). RESULTS: Suppressed 24-hour amplitude, lowest (Q1) versus highest (Q4) quartile (hazard ratio [HR]Q1 vs Q4 = 1.94, 95% confidence interval [CI] = 1.53-2.46, p < 0.001), and more fragmented (higher IV: HRQ4 vs Q1 = 1.49, 95% CI = 1.18-1.88, p < 0.001) rhythms predicted higher delirium risk, after adjusting for age, sex, education, cognitive performance, sleep duration/disturbances, and comorbidities. In those free from dementia, each hour of delayed acrophase was associated with delirium risk (HR = 1.13, 95% CI = 1.04-1.23, p = 0.003). Suppressed 24-hour amplitude was associated with increased risk of progression from delirium to new onset dementia (HR = 1.31, 95% CI = 1.03-1.67, p = 0.03 for each 1-standard deviation decrease). INTERPRETATION: Twenty-four-hour daily RAR suppression, fragmentation, and potentially delayed acrophase were associated with delirium risk. Subsequent progression to dementia was more likely in delirium cases with suppressed rhythms. The presence of RAR disturbances before delirium and prior to progression to dementia suggests that these disturbances may predict higher risk and be involved in early disease pathogenesis. ANN NEUROL 2023;93:1145-1157.


Asunto(s)
Delirio , Demencia , Trastornos del Sueño-Vigilia , Persona de Mediana Edad , Humanos , Sueño , Ritmo Circadiano , Descanso , Actigrafía , Demencia/etiología , Delirio/etiología
7.
PLoS Comput Biol ; 19(9): e1011510, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37769026

RESUMEN

The circadian system drives near-24-h oscillations in behaviors and biological processes. The underlying core molecular clock regulates the expression of other genes, and it has been shown that the expression of more than 50 percent of genes in mammals displays 24-h rhythmic patterns, with the specific genes that cycle varying from one tissue to another. Determining rhythmic gene expression patterns in human tissues sampled as single timepoints has several challenges, including the reconstruction of temporal order of highly noisy data. Previous methodologies have attempted to address these challenges in one or a small number of tissues for which rhythmic gene evolutionary conservation is assumed to be preserved. Here we introduce CIRCUST, a novel CIRCular-robUST methodology for analyzing molecular rhythms, that relies on circular statistics, is robust against noise, and requires fewer assumptions than existing methodologies. Next, we validated the method against four controlled experiments in which sampling times were known, and finally, CIRCUST was applied to 34 tissues from the Genotype-Tissue Expression (GTEx) dataset with the aim towards building a comprehensive daily rhythm gene expression atlas in humans. The validation and application shown here indicate that CIRCUST provides a flexible framework to formulate and solve the issues related to the analysis of molecular rhythms in human tissues. CIRCUST methodology is publicly available at https://github.com/yolandalago/CIRCUST/.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Humanos , Ritmo Circadiano/genética , Expresión Génica , Regulación de la Expresión Génica/genética , Relojes Circadianos/genética , Mamíferos/genética
8.
Int J Behav Nutr Phys Act ; 21(1): 51, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698447

RESUMEN

BACKGROUND: There is a growing population of survivors of colorectal cancer (CRC). Fatigue and insomnia are common symptoms after CRC, negatively influencing health-related quality of life (HRQoL). Besides increasing physical activity and decreasing sedentary behavior, the timing and patterns of physical activity and rest over the 24-h day (i.e. diurnal rest-activity rhythms) could also play a role in alleviating these symptoms and improving HRQoL. We investigated longitudinal associations of the diurnal rest-activity rhythm (RAR) with fatigue, insomnia, and HRQoL in survivors of CRC. METHODS: In a prospective cohort study among survivors of stage I-III CRC, 5 repeated measurements were performed from 6 weeks up to 5 years post-treatment. Parameters of RAR, including mesor, amplitude, acrophase, circadian quotient, dichotomy index, and 24-h autocorrelation coefficient, were assessed by a custom MATLAB program using data from tri-axial accelerometers worn on the upper thigh for 7 consecutive days. Fatigue, insomnia, and HRQoL were measured by validated questionnaires. Confounder-adjusted linear mixed models were applied to analyze longitudinal associations of RAR with fatigue, insomnia, and HRQoL from 6 weeks until 5 years post-treatment. Additionally, intra-individual and inter-individual associations over time were separated. RESULTS: Data were available from 289 survivors of CRC. All RAR parameters except for 24-h autocorrelation increased from 6 weeks to 6 months post-treatment, after which they remained relatively stable. A higher mesor, amplitude, circadian quotient, dichotomy index, and 24-h autocorrelation were statistically significantly associated with less fatigue and better HRQoL over time. A higher amplitude and circadian quotient were associated with lower insomnia. Most of these associations appeared driven by both within-person changes over time and between-person differences in RAR parameters. No significant associations were observed for acrophase. CONCLUSIONS: In the first five years after CRC treatment, adhering to a generally more active (mesor) and consistent (24-h autocorrelation) RAR, with a pronounced peak activity (amplitude) and a marked difference between daytime and nighttime activity (dichotomy index) was found to be associated with lower fatigue, lower insomnia, and a better HRQoL. Future intervention studies are needed to investigate if restoring RAR among survivors of CRC could help to alleviate symptoms of fatigue and insomnia while enhancing their HRQoL. TRIAL REGISTRATION: EnCoRe study NL6904 ( https://www.onderzoekmetmensen.nl/ ).


Asunto(s)
Supervivientes de Cáncer , Ritmo Circadiano , Neoplasias Colorrectales , Ejercicio Físico , Fatiga , Calidad de Vida , Descanso , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Ritmo Circadiano/fisiología , Supervivientes de Cáncer/psicología , Anciano , Estudios Longitudinales , Encuestas y Cuestionarios
9.
J Pineal Res ; 76(5): e12965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860494

RESUMEN

Melatonin is a pineal hormone that modulates the circadian system and exerts soporific and phase-shifting effects. It is also involved in many other physiological processes, such as those implicated in cardiovascular, endocrine, immune, and metabolic functions. However, the role of melatonin in glucose metabolism remains contradictory, and its action on human adipose tissue (AT) explants has not been demonstrated. We aimed to assess whether melatonin (a pharmacological dose) influences insulin sensitivity in human AT. This will help better understand melatonin administration's effect on glucose metabolism. Abdominal AT (subcutaneous and visceral) biopsies were obtained from 19 participants with severe obesity (age: 42.84 ± 12.48 years; body mass index: 43.14 ± 8.26 kg/m2) who underwent a laparoscopic gastric bypass. AT biopsies were exposed to four different treatments: control (C), insulin alone (I) (10 nM), melatonin alone (M) (5000 pg/mL), and insulin plus melatonin combined (I + M). All four conditions were repeated in both subcutaneous and visceral AT, and all were performed in the morning at 8 a.m. (n = 19) and the evening at 8 p.m. (in a subsample of n = 12). We used western blot analysis to determine insulin signaling (using the pAKT/tAKT ratio). Furthermore, RNAseq analyses were performed to better understand the metabolic pathways involved in the effect of melatonin on insulin signaling. As expected, insulin treatment (I) increased the pAKT/tAKT ratio compared with control (p < .0001). Furthermore, the addition of melatonin (I + M) resulted in a decrease in insulin signaling as compared with insulin alone (I); this effect was significant only during the evening time (not in the morning time). Further, RNAseq analyses in visceral AT during the evening condition (at 8 p.m.) showed that melatonin resulted in a prompt transcriptome response (around 1 h after melatonin addition), particularly by downregulating the insulin signaling pathway. Our results show that melatonin reduces insulin sensitivity in human AT during the evening. These results may partly explain the previous studies showing a decrease in glucose tolerance after oral melatonin administration in the evening or when eating late when endogenous melatonin is present.


Asunto(s)
Resistencia a la Insulina , Melatonina , Humanos , Melatonina/farmacología , Resistencia a la Insulina/fisiología , Adulto , Masculino , Femenino , Persona de Mediana Edad , Insulina/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos
10.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493686

RESUMEN

Asthma often worsens at night. To determine if the endogenous circadian system contributes to the nocturnal worsening of asthma, independent of sleep and other behavioral and environmental day/night cycles, we studied patients with asthma (without steroid use) over 3 wk in an ambulatory setting (with combined circadian, environmental, and behavioral effects) and across the circadian cycle in two complementary laboratory protocols performed in dim light, which separated circadian from environmental and behavioral effects: 1) a 38-h "constant routine," with continuous wakefulness, constant posture, 2-hourly isocaloric snacks, and 2) a 196-h "forced desynchrony" incorporating seven identical recurring 28-h sleep/wake cycles with all behaviors evenly scheduled across the circadian cycle. Indices of pulmonary function varied across the day in the ambulatory setting, and both laboratory protocols revealed significant circadian rhythms, with lowest function during the biological night, around 4:00 AM, uncovering a nocturnal exacerbation of asthma usually unnoticed or hidden by the presence of sleep. We also discovered a circadian rhythm in symptom-based rescue bronchodilator use (ß2-adrenergic agonist inhaler) whereby inhaler use was four times more likely during the circadian night than day. There were additive influences on asthma from the circadian system plus sleep and other behavioral or environmental effects. Individuals with the lowest average pulmonary function tended to have the largest daily circadian variations and the largest behavioral cycle effects on asthma. When sleep was modeled to occur at night, the summed circadian, behavioral/environmental cycle effects almost perfectly matched the ambulatory data. Thus, the circadian system contributes to the common nocturnal worsening of asthma, implying that internal biological time should be considered for optimal therapy.


Asunto(s)
Asma/etiología , Conducta/fisiología , Ritmo Circadiano , Ambiente , Sueño , Adulto , Asma/patología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Adulto Joven
11.
FASEB J ; 36(1): e22043, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861073

RESUMEN

Circadian misalignment-the misalignment between the central circadian "clock" and behavioral and environmental cycles (including sleep/wake, fasting/eating, dark/light)-results in adverse cardiovascular and metabolic effects. Potential underlying mechanisms for these adverse effects include alterations in the orogastrointestinal microbiota. However, it remains unknown whether human oral microbiota has endogenous circadian rhythms (i.e., independent of sleep/wake, fasting/eating, and dark/light cycles) and whether circadian misalignment influences oral microbiota community composition. Healthy young individuals [27.3 ± 2.3 years (18-35 years), 4 men and 2 women, body-mass index range: 18-28 kg/m2 ] were enrolled in a stringently controlled 14-day circadian laboratory protocol. This included a 32-h constant routine (CR) protocol (endogenous circadian baseline assessment), a forced desynchrony protocol with four 28-h "days" under ~3 lx to induce circadian misalignment, and a post-misalignment 40-h CR protocol. Microbiota assessments were performed on saliva samples collected every 4 h throughout both CR protocols. Total DNA was extracted and processed using high-throughput 16S ribosomal RNA gene amplicon sequencing. The relative abundance of specific oral microbiota populations, i.e., one of the five dominant phyla, and three of the fourteen dominant genera, exhibited significant endogenous circadian rhythms. Importantly, circadian misalignment dramatically altered the oral microbiota landscape, such that four of the five dominant phyla and eight of the fourteen dominant genera exhibited significant circadian misalignment effects. Moreover, circadian misalignment significantly affected the metagenome functional content of oral microbiota (inferred gene content analysis), as indicated by changes in specific functional pathways associated with metabolic control and immunity. Collectively, our proof-of-concept study provides evidence for endogenous circadian rhythms in human oral microbiota and show that even relatively short-term experimental circadian misalignment can dramatically affect microbiota community composition and functional pathways involved in metabolism and immune function. These proof-of-principle findings have translational relevance to individuals typically exposed to circadian misalignment, including night shift workers and frequent flyers.


Asunto(s)
Ritmo Circadiano , Microbiota , Boca/microbiología , Saliva/microbiología , Horario de Trabajo por Turnos , Adolescente , Adulto , Femenino , Humanos , Masculino , Prueba de Estudio Conceptual
12.
FASEB J ; 35(7): e21649, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34164846

RESUMEN

Eating chocolate in the morning or in the evening/at night, may differentially affect energy balance and impact body weight due to changes in energy intake, substrate oxidation, microbiota (composition/function), and circadian-related variables. In a randomized controlled trial, postmenopausal females (n = 19) had 100 g of chocolate in the morning (MC), in the evening/at night (EC), or no chocolate (N) for 2 weeks and ate any other food ad libitum. Our results show that 14 days of chocolate intake did not increase body weight. Chocolate consumption decreased hunger and desire for sweets (P < .005), and reduced ad libitum energy intake by ~300 kcal/day during MC and ~150 kcal/day during EC (P = .01), but did not fully compensate for the extra energy contribution of chocolate (542 kcal/day). EC increased physical activity by +6.9%, heat dissipation after meals +1.3%, and carbohydrate oxidation by +35.3% (P < .05). MC reduced fasting glucose (4.4%) and waist circumference (-1.7%) and increased lipid oxidation (+25.6%). Principal component analyses showed that both timings of chocolate intake resulted in differential microbiota profiles and function (P < .05). Heat map of wrist temperature and sleep records showed that EC induced more regular timing of sleep episodes with lower variability of sleep onset among days than MC (60 min vs 78 min; P = .028). In conclusion, having chocolate in the morning or in the evening/night results in differential effects on hunger and appetite, substrate oxidation, fasting glucose, microbiota (composition and function), and sleep and temperature rhythms. Results highlight that the "when" we eat is a relevant factor to consider in energy balance and metabolism.


Asunto(s)
Apetito/efectos de los fármacos , Índice de Masa Corporal , Carbohidratos/química , Chocolate/efectos adversos , Hambre/efectos de los fármacos , Microbiota/efectos de los fármacos , Anciano , Glucemia/análisis , Estudios Cruzados , Ingestión de Energía , Ayuno , Femenino , Humanos , Persona de Mediana Edad , Periodo Posprandial , Factores de Tiempo
13.
J Pineal Res ; 72(3): e12791, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35133678

RESUMEN

The daily rhythm of plasma melatonin concentrations is typically unimodal, with one broad peak during the circadian night and near-undetectable levels during the circadian day. Light at night acutely suppresses melatonin secretion and phase shifts its endogenous circadian rhythm. In contrast, exposure to darkness during the circadian day has not generally been reported to increase circulating melatonin concentrations acutely. Here, in a highly-controlled simulated night shift protocol with 12-h inverted behavioral/environmental cycles, we unexpectedly found that circulating melatonin levels were significantly increased during daytime sleep (p < .0001). This resulted in a secondary melatonin peak during the circadian day in addition to the primary peak during the circadian night, when sleep occurred during the circadian day following an overnight shift. This distinctive diurnal melatonin rhythm with antiphasic peaks could not be readily anticipated from the behavioral/environmental factors in the protocol (e.g., light exposure, posture, diet, activity) or from current mathematical model simulations of circadian pacemaker output. The observation, therefore, challenges our current understanding of underlying physiological mechanisms that regulate melatonin secretion. Interestingly, the increase in melatonin concentration observed during daytime sleep was positively correlated with the change in timing of melatonin nighttime peak (p = .002), but not with the degree of light-induced melatonin suppression during nighttime wakefulness (p = .92). Both the increase in daytime melatonin concentrations and the change in the timing of the nighttime peak became larger after repeated exposure to simulated night shifts (p = .002 and p = .006, respectively). Furthermore, we found that melatonin secretion during daytime sleep was positively associated with an increase in 24-h glucose and insulin levels during the night shift protocol (p = .014 and p = .027, respectively). Future studies are needed to elucidate the key factor(s) driving the unexpected daytime melatonin secretion and the melatonin rhythm with antiphasic peaks during shifted sleep/wake schedules, the underlying mechanisms of their relationship with glucose metabolism, and the relevance for diabetes risk among shift workers.


Asunto(s)
Melatonina , Trastornos del Sueño del Ritmo Circadiano , Ritmo Circadiano/fisiología , Humanos , Melatonina/metabolismo , Sueño/fisiología , Tolerancia al Trabajo Programado/fisiología
14.
Proc Natl Acad Sci U S A ; 116(47): 23806-23812, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685618

RESUMEN

Shift work causes circadian misalignment and is a risk factor for obesity. While some characteristics of the human circadian system and energy metabolism differ between males and females, little is known about whether sex modulates circadian misalignment effects on energy homeostasis. Here we show-using a randomized cross-over design with two 8-d laboratory protocols in 14 young healthy adults (6 females)-that circadian misalignment has sex-specific influences on energy homeostasis independent of behavioral/environmental factors. First, circadian misalignment affected 24-h average levels of the satiety hormone leptin sex-dependently (P < 0.0001), with a ∼7% decrease in females (P < 0.05) and an ∼11% increase in males (P < 0.0001). Consistently, circadian misalignment also increased the hunger hormone ghrelin by ∼8% during wake periods in females (P < 0.05) without significant effect in males. Females reported reduced fullness, consistent with their appetite hormone changes. However, males reported a rise in cravings for energy-dense and savory foods not consistent with their homeostatic hormonal changes, suggesting involvement of hedonic appetite pathways in males. Moreover, there were significant sex-dependent effects of circadian misalignment on respiratory quotient (P < 0.01), with significantly reduced values (P < 0.01) in females when misaligned, and again no significant effects in males, without sex-dependent effects on energy expenditure. Changes in sleep, thermoregulation, behavioral activity, lipids, and catecholamine levels were also assessed. These findings demonstrate that sex modulates the effects of circadian misalignment on energy metabolism, indicating possible sex-specific mechanisms and countermeasures for obesity in male and female shift workers.


Asunto(s)
Ritmo Circadiano , Metabolismo Energético , Factores Sexuales , Adulto , Apetito/fisiología , Temperatura Corporal , Femenino , Preferencias Alimentarias , Ghrelina/fisiología , Humanos , Leptina/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Masculino , Oxidación-Reducción , Sueño , Adulto Joven
15.
Stroke ; 52(6): 2180-2190, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33940951

RESUMEN

Circadian biology modulates almost all aspects of mammalian physiology, disease, and response to therapies. Emerging data suggest that circadian biology may significantly affect the mechanisms of susceptibility, injury, recovery, and the response to therapy in stroke. In this review/perspective, we survey the accumulating literature and attempt to connect molecular, cellular, and physiological pathways in circadian biology to clinical consequences in stroke. Accounting for the complex and multifactorial effects of circadian rhythm may improve translational opportunities for stroke diagnostics and therapeutics.


Asunto(s)
Ritmo Circadiano/fisiología , Mediadores de Inflamación/fisiología , Acoplamiento Neurovascular/fisiología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Animales , Ensayos Clínicos como Asunto/métodos , Humanos , Accidente Cerebrovascular/diagnóstico
16.
Thorax ; 76(1): 53-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199525

RESUMEN

INTRODUCTION: Shift work causes misalignment between internal circadian time and the external light/dark cycle and is associated with metabolic disorders and cancer. Approximately 20% of the working population in industrialised countries work permanent or rotating night shifts, exposing this large population to the risk of circadian misalignment-driven disease. Analysis of the impact of shift work on chronic inflammatory diseases is lacking. We investigated the association between shift work and asthma. METHODS: We describe the cross-sectional relationship between shift work and prevalent asthma in >280000 UK Biobank participants, making adjustments for major confounding factors (smoking history, ethnicity, socioeconomic status, physical activity, body mass index). We also investigated chronotype. RESULTS: Compared with day workers, 'permanent' night shift workers had a higher likelihood of moderate-severe asthma (OR 1.36 (95% CI 1.03 to 1.8)) and all asthma (OR 1.23 (95% CI 1.03 to 1.46)). Individuals doing any type of shift work had higher adjusted odds of wheeze/whistling in the chest. Shift workers who never or rarely worked on nights and people working permanent nights had a higher adjusted likelihood of having reduced lung function (FEV1 <80% predicted). We found an increase in the risk of moderate-severe asthma in morning chronotypes working irregular shifts, including nights (OR 1.55 (95% CI 1.06 to 2.27)). CONCLUSIONS: The public health implications of these findings are far-reaching due to the high prevalence and co-occurrence of both asthma and shift work. Future longitudinal follow-up studies are needed to determine if modifying shift work schedules to take into account chronotype might present a public health measure to reduce the risk of developing inflammatory diseases such as asthma.


Asunto(s)
Asma/epidemiología , Medición de Riesgo/métodos , Horario de Trabajo por Turnos/efectos adversos , Sueño/fisiología , Adulto , Anciano , Asma/etiología , Asma/fisiopatología , Ritmo Circadiano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Encuestas y Cuestionarios , Factores de Tiempo , Reino Unido/epidemiología
17.
Psychol Med ; 51(9): 1562-1569, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32234100

RESUMEN

BACKGROUND: The output of many healthy physiological systems displays fractal fluctuations with self-similar temporal structures. Altered fractal patterns are associated with pathological conditions. There is evidence that patients with bipolar disorder have altered daily behaviors. METHODS: To test whether fractal patterns in motor activity are altered in patients with bipolar disorder, we analyzed 2-week actigraphy data collected from 106 patients with bipolar disorder type I in a euthymic state, 73 unaffected siblings of patients, and 76 controls. To examine the link between fractal patterns and symptoms, we analyzed 180-day actigraphy and mood symptom data that were simultaneously collected from 14 patients. RESULTS: Compared to controls, patients showed excessive regularity in motor activity fluctuations at small time scales (<1.5 h) as quantified by a larger scaling exponent (α1 > 1), indicating a more rigid motor control system. α1 values of siblings were between those of patients and controls. Further examinations revealed that the group differences in α1 were only significant in females. Sex also affected the group differences in fractal patterns at larger time scales (>2 h) as quantified by scaling exponent α2. Specifically, female patients and siblings had a smaller α2 compared to female controls, indicating more random activity fluctuations; while male patients had a larger α2 compared to male controls. Interestingly, a higher weekly depression score was associated with a lower α1 in the subsequent week. CONCLUSIONS: Our results show sex- and scale-dependent alterations in fractal activity regulation in patients with bipolar disorder. The mechanisms underlying the alterations are yet to be determined.


Asunto(s)
Trastorno Bipolar/diagnóstico , Fractales , Actividad Motora/fisiología , Actigrafía , Adulto , Afecto , Anciano , Biomarcadores , Estudios de Casos y Controles , Ritmo Circadiano/fisiología , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Países Bajos , Hermanos , Sueño , Trastornos del Sueño-Vigilia/diagnóstico
18.
Proc Natl Acad Sci U S A ; 115(30): 7789-7794, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987027

RESUMEN

Circadian misalignment, such as in shift work, has been associated with obesity and type 2 diabetes. However, direct effects of circadian misalignment on skeletal muscle insulin sensitivity and the muscle molecular circadian clock have never been studied in humans. Here, we investigated insulin sensitivity and muscle metabolism in 14 healthy young lean men [age 22.4 ± 2.8 years; body mass index (BMI) 22.3 ± 2.1 kg/m2 (mean ± SD)] after a 3-d control protocol and a 3.5-d misalignment protocol induced by a 12-h rapid shift of the behavioral cycle. We show that short-term circadian misalignment results in a significant decrease in muscle insulin sensitivity due to a reduced skeletal muscle nonoxidative glucose disposal (rate of disappearance: 23.7 ± 2.4 vs. 18.4 ± 1.4 mg/kg per minute; control vs. misalignment; P = 0.024). Fasting glucose and free fatty acid levels as well as sleeping metabolic rate were higher during circadian misalignment. Molecular analysis of skeletal muscle biopsies revealed that the molecular circadian clock was not aligned to the inverted behavioral cycle, and transcriptome analysis revealed the human PPAR pathway as a key player in the disturbed energy metabolism upon circadian misalignment. Our findings may provide a mechanism underlying the increased risk of type 2 diabetes among shift workers.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Ácidos Grasos/sangre , Perfilación de la Expresión Génica , Corazón , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Obesidad/sangre , Adulto , Diabetes Mellitus Tipo 2/patología , Humanos , Masculino , Músculo Esquelético/patología , Obesidad/patología
19.
Diabetologia ; 63(3): 462-472, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31915891

RESUMEN

The circadian system generates endogenous rhythms of approximately 24 h, the synchronisation of which are vital for healthy bodily function. The timing of many physiological processes, including glucose metabolism, are coordinated by the circadian system, and circadian disruptions that desynchronise or misalign these rhythms can result in adverse health outcomes. In this review, we cover the role of the circadian system and its disruption in glucose metabolism in healthy individuals and individuals with type 2 diabetes mellitus. We begin by defining circadian rhythms and circadian disruption and then we provide an overview of circadian regulation of glucose metabolism. We next discuss the impact of circadian disruptions on glucose control and type 2 diabetes. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying the impact of circadian disruption on glucose metabolism may aid in improving glycaemic control.


Asunto(s)
Trastornos Cronobiológicos/complicaciones , Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/etiología , Glucosa/metabolismo , Animales , Glucemia/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Trastornos Cronobiológicos/epidemiología , Trastornos Cronobiológicos/metabolismo , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Factores de Riesgo , Sueño/fisiología
20.
FASEB J ; 33(1): 175-180, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29965796

RESUMEN

Daily rhythms in physiology and behavior change with age. An unresolved question is to what extent such age-related alterations in circadian organization are driven by the central clock in the suprachiasmatic nucleus (SCN), modifying timing signals to contributing peripheral tissue oscillators, and are mediated by underlying changes in the local cellular oscillators themselves. Using a bioluminescence reporter approach, we sought to determine whether circadian clock function in human adipocytes from subcutaneous (SAT) and visceral (VAT) adipose tissues changes with age. SAT and VAT biopsies were obtained from obese individuals during gastric bypass surgeries [ n = 16; body mass index: 44.8 ± 11.4 kg/m2; age: 44 ± 9 yr (range: 30-58)]. Cells were isolated and transduced with a lentiviral circadian reporter construct [brain and muscle aryl hydrocarbon receptor nuclear translocator-like:luciferase ( BMAL:LUC)], and bioluminescence was recorded over a period of 3 d. Human BMAL1:LUC adipocytes displayed a robust luminescence rhythm with comparable within-individual periods in mature and preadipocytes ( P > 0.05). With increasing age, the circadian period decreased in mature adipocytes ( P = 0.005) (ß = 4 min/yr; P < 0.05). Our ex vivo approach indicated that ageing changes the organization of endogenous circadian oscillators in human adipocytes, independent of SCN signaling.-Kolbe, I., Carrasco-Benso, M. P., López-Mínguez, J., Luján, J., Scheer, F. A. J. L., Oster, H., Garaulet, M. Circadian period of luciferase expression shortens with age in human mature adipocytes from obese patients.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Biomarcadores/metabolismo , Ritmo Circadiano , Luciferasas/metabolismo , Obesidad/fisiopatología , Factores de Transcripción ARNTL/metabolismo , Adipocitos/citología , Tejido Adiposo/citología , Adulto , Factores de Edad , Índice de Masa Corporal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA