Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(14): 2406-2423, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35181781

RESUMEN

The human choroid is a heterogeneous, highly vascular connective tissue that dysfunctions in age-related macular degeneration (AMD). In this study, we performed single-cell RNA sequencing on 21 human choroids, 11 of which were derived from donors with early atrophic or neovascular AMD. Using this large donor cohort, we identified new gene expression signatures and immunohistochemically characterized discrete populations of resident macrophages, monocytes/inflammatory macrophages and dendritic cells. These three immune populations demonstrated unique expression patterns for AMD genetic risk factors, with dendritic cells possessing the highest expression of the neovascular AMD-associated MMP9 gene. Additionally, we performed trajectory analysis to model transcriptomic changes across the choroidal vasculature, and we identified expression signatures for endothelial cells from choroidal arterioles and venules. Finally, we performed differential expression analysis between control, early atrophic AMD, and neovascular AMD samples, and we observed that early atrophic AMD samples had high expression of SPARCL1, a gene that has been shown to increase in response to endothelial damage. Likewise, neovascular endothelial cells harbored gene expression changes consistent with endothelial cell damage and demonstrated increased expression of the sialomucins CD34 and ENCM, which were also observed at the protein level within neovascular membranes. Overall, this study characterizes the molecular features of new populations of choroidal endothelial cells and mononuclear phagocytes in a large cohort of AMD and control human donors.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular Húmeda , Inhibidores de la Angiogénesis , Coroides , Neovascularización Coroidal/genética , Células Endoteliales , Humanos , Macrófagos , Transcriptoma/genética , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Degeneración Macular Húmeda/complicaciones
2.
Hum Mol Genet ; 31(5): 775-782, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34590675

RESUMEN

The m.3243A>G mutation in the mitochondrial genome commonly causes retinal degeneration in patients with maternally inherited diabetes and deafness and mitochondrial encephalopathy, lactic acidosis and stroke-like episodes. Like other mitochondrial mutations, m.3243A>G is inherited from the mother with a variable proportion of wild type and mutant mitochondrial genomes in different cells. The mechanism by which the m.3243A>G variant in each tissue relates to the manifestation of disease phenotype is not fully understood. Using a digital PCR assay, we found that the % m.3243G in skin derived dermal fibroblasts was positively correlated with that of blood from the same individual. The % m.3243G detected in fibroblast cultures remained constant over multiple passages and was negatively correlated with mtDNA copy number. Although the % m.3243G present in blood was not correlated with severity of vision loss, as quantified by Goldmann visual field, a significant negative correlation between % m.3243G and the age of onset of visual symptoms was detected. Altogether, these results indicate that precise measurement of % m.3243G in clinically accessible tissues such as skin and blood may yield information relevant to the management of retinal m.3243A>G-associated disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome MELAS , Enfermedades Mitocondriales , ADN Mitocondrial/genética , Sordera , Diabetes Mellitus Tipo 2/genética , Humanos , Síndrome MELAS/genética , Enfermedades Mitocondriales/genética , Mutación
3.
Ophthalmology ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309476

RESUMEN

PURPOSE: To investigate the distribution of genotypes and natural history of ABCA4-associated retinal disease in a large cohort of patients seen at a single institution. DESIGN: Retrospective, single-institution cohort review. PARTICIPANTS: Patients seen at the University of Iowa between November 1986 and August 2022 clinically suspected to have disease caused by sequence variations in ABCA4. METHODS: DNA samples from participants were subjected to a tiered testing strategy progressing from allele-specific screening to whole genome sequencing. Charts were reviewed, and clinical data were tabulated. The pathogenic severity of the most common alleles was estimated by studying groups of patients who shared 1 allele. Groups of patients with shared genotypes were reviewed for evidence of modifying factor effects. MAIN OUTCOME MEASURES: Age at first uncorrectable vision loss, best-corrected visual acuity, and the area of the I2e isopter of the Goldmann visual field. RESULTS: A total of 460 patients from 390 families demonstrated convincing clinical features of ABCA4-associated retinal disease. Complete genotypes were identified in 399 patients, and partial genotypes were identified in 61. The median age at first vision loss was 16 years (range, 4-76 years). Two hundred sixty-five families (68%) harbored a unique genotype, and no more than 10 patients shared any single genotype. Review of the patients with shared genotypes revealed evidence of modifying factors that in several cases resulted in a > 15-year difference in age at first vision loss. Two hundred forty-one different alleles were identified among the members of this cohort, and 161 of these (67%) were found in only a single individual. CONCLUSIONS: ABCA4-associated retinal disease ranges from a very severe photoreceptor disease with an onset before 5 years of age to a late-onset retinal pigment epithelium-based condition resembling pattern dystrophy. Modifying factors frequently impact the ABCA4 disease phenotype to a degree that is similar in magnitude to the detectable ABCA4 alleles themselves. It is likely that most patients in any cohort will harbor a unique genotype. The latter observations taken together suggest that patients' clinical findings in most cases will be more useful for predicting their clinical course than their genotype. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

4.
Hum Mol Genet ; 30(16): 1543-1558, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34014299

RESUMEN

The human neural retina is a light sensitive tissue with remarkable spatial and cellular organization. Compared with the periphery, the central retina contains more densely packed cone photoreceptor cells with unique morphologies and synaptic wiring. Some regions of the central retina exhibit selective degeneration or preservation in response to retinal disease and the basis for this variation is unknown. In this study, we used both bulk and single-cell RNA sequencing to compare gene expression within concentric regions of the central retina. We identified unique gene expression patterns of foveal cone photoreceptor cells, including many foveal-enriched transcription factors. In addition, we found that the genes RORB1, PPFIA1 and KCNAB2 are differentially spliced in the foveal, parafoveal and macular regions. These results provide a highly detailed spatial characterization of the retinal transcriptome and highlight unique molecular features of different retinal regions.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Enfermedades de la Retina , Fóvea Central , Humanos , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Enfermedades de la Retina/genética , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 116(48): 24100-24107, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712411

RESUMEN

The human retinal pigment epithelium (RPE) and choroid are complex tissues that provide crucial support to the retina. Disease affecting either of these supportive tissues can lead to irreversible blindness in the setting of age-related macular degeneration. In this study, single-cell RNA sequencing was performed on macular and peripheral regions of RPE-choroid from 7 human donor eyes in 2 independent experiments. In the first experiment, total RPE/choroid preparations were evaluated and expression profiles specific to RPE and major choroidal cell populations were identified. As choroidal endothelial cells represent a minority of the total RPE/choroidal cell population but are strongly implicated in age-related macular degeneration (AMD) pathogenesis, a second single-cell RNA-sequencing experiment was performed using endothelial cells enriched by magnetic separation. In this second study, we identified gene expression signatures along the choroidal vascular tree, classifying the transcriptome of human choriocapillaris, arterial, and venous endothelial cells. We found that the choriocapillaris highly and specifically expresses the regulator of cell cycle gene (RGCC), a gene that responds to complement activation and induces apoptosis in endothelial cells. In addition, RGCC was the most up-regulated choriocapillaris gene in a donor diagnosed with AMD. These results provide a characterization of the human RPE and choriocapillaris transcriptome, offering potential insight into the mechanisms of choriocapillaris response to complement injury and choroidal vascular disease in age-related macular degeneration.


Asunto(s)
Coroides/metabolismo , Degeneración Macular/metabolismo , Retina/metabolismo , Transcriptoma , Coroides/citología , Coroides/patología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Humanos , Retina/citología , Retina/patología , Análisis de la Célula Individual
6.
BMC Genomics ; 22(1): 477, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174832

RESUMEN

BACKGROUND: Glaucoma is a leading cause of visual disability and blindness. Release of iris pigment within the eye, pigment dispersion syndrome (PDS), can lead to one type of glaucoma known as pigmentary glaucoma. PDS has a genetic component, however, the genes involved with this condition are largely unknown. We sought to discover genes that cause PDS by testing cohorts of patients and controls for mutations using a tiered analysis of exome data. RESULTS: Our primary analysis evaluated melanosome-related genes that cause dispersion of iris pigment in mice (TYRP1, GPNMB, LYST, DCT, and MITF). We identified rare mutations, but they were not statistically enriched in PDS patients. Our secondary analyses examined PMEL (previously linked with PDS), MRAP, and 19 other genes. Four MRAP mutations were identified in PDS cases but not in controls (p = 0.016). Immunohistochemical analysis of human donor eyes revealed abundant MRAP protein in the iris, the source of pigment in PDS. However, analysis of MRAP in additional cohorts (415 cases and 1645 controls) did not support an association with PDS. We also did not confirm a link between PMEL and PDS in our cohorts due to lack of reported mutations and similar frequency of the variants in PDS patients as in control subjects. CONCLUSIONS: We did not detect a statistical enrichment of mutations in melanosome-related genes in human PDS patients and we found conflicting data about the likely pathogenicity of MRAP mutations. PDS may have a complex genetic basis that is not easily unraveled with exome analyses.


Asunto(s)
Exoma , Glaucoma de Ángulo Abierto , Animales , Glaucoma de Ángulo Abierto/genética , Humanos , Iris , Glicoproteínas de Membrana , Ratones , Pigmentación , Secuenciación del Exoma
7.
Microvasc Res ; 131: 104031, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531351

RESUMEN

The human choroidal vasculature is subject to age-related structural and gene expression changes implicated in age-related macular degeneration (AMD). In this study, we performed both bulk and single-cell RNA sequencing on infant (n = 4 for bulk experiments, n = 2 for single-cell experiments) and adult (n = 13 for bulk experiments, n = 6 for single-cell experiments) human donors to characterize how choroidal gene expression changes with age. Differential expression analysis revealed that aged choroidal samples were enriched in genes encoding pro-inflammatory transcription factors and leukocyte transendothelial cell migration adhesion proteins. Such genes were observed to be differentially expressed specifically within choroidal endothelial cells at the single-cell level. Immunohistochemistry experiments support transcriptional findings that CD34 is elevated in infant choriocapillaris endothelial cells while ICAM-1 is enriched in adults. These results suggest several potential drivers of the pro-inflammatory vascular phenotype observed with advancing age.


Asunto(s)
Envejecimiento/genética , Coroides/irrigación sanguínea , Células Endoteliales/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/genética , Degeneración Macular/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Inflamación/metabolismo , Degeneración Macular/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo
8.
Exp Eye Res ; 200: 108204, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32910939

RESUMEN

Single-cell RNA sequencing has revolutionized ocular gene expression studies. This technology has enabled researchers to identify expression signatures for rare cell types and characterize how gene expression changes across biological conditions, such as topographic region or disease status. However, sharing single-cell RNA sequencing results remains a major obstacle, particular for individuals without a computational background. To address these limitations, we developed Spectacle, an interactive web-based resource for exploring previously published single-cell RNA sequencing data from ocular studies. Spectacle is powered by a locally developed R package, cellcuratoR, which utilizes the Shiny framework in R to generate interactive visualizations for single-cell expression data. Spectacle contains five pre-processed ocular single-cell RNA sequencing data sets and is accessible via the web at OcularGeneExpression.org/singlecell. With Spectacle, users can interactively identify which cell types express a gene of interest, detect transcriptomic subpopulations within a cell type, and perform highly flexible differential expression analyses. The freely-available Spectacle system reduces the bioinformatic barrier for interacting with rich single-cell RNA sequencing studies from ocular tissues, making it easy to quickly identify cell types that express a gene of interest.


Asunto(s)
Biología Computacional/métodos , ARN/genética , Retina/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Humanos , Retina/citología , Secuenciación del Exoma
9.
Doc Ophthalmol ; 139(1): 21-32, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30927186

RESUMEN

BACKGROUND: Albinism patients have poor visual acuity in addition to hypopigmentation. Their foveal anatomy is abnormal, but correlation with function is incompletely understood. This study correlates retinal electrophysiology, visual acuity and optical coherence tomography (OCT) anatomy in albinism patients and compares with age-similar controls. METHODS: Institutional Review Board approval was obtained (IRB# 201408782). Patients were recruited from clinical practice. Inclusion criteria were at least three clinical features of albinism including iris transillumination, nystagmus, fundus hypopigmentation, or foveal hypoplasia on OCT and/or molecular genetic confirmation. Diagnosys (Lowell, Mass) full-field ERG (ffERG) and VERIS multifocal ERG (mfERG; Electro-Diagnostic Imaging, Milpitas, California) were obtained using standard International Society for Clinical Electrophysiology of Vision protocols. The mfERG protocol was a 4-min 103-hexagon protocol covering approximately 40° in diameter of central retina. Control subjects without albinism were recruited by in-hospital notices and invitations in clinic. OCT central thickness was recorded, and an OCT foveal score was calculated. Nonparametric permutation testing was utilized to determine the statistical significance. RESULTS: A total of 16 albinism patients and 19 age-similar controls were recruited. Four of 16 albinism patients had no nystagmus. Seventeen non-albinism controls had no ocular disorder other than refractive error. Two controls had infantile nystagmus with normal maculas on OCT. There was no statistically significant difference in mfERG amplitude or latency between albinism patients with or without nystagmus (lowest p = 0.68; 0.54, respectively). mfERG: 12 of 16 (75%) albinism patients had average ring 1 amplitudes within one standard deviation of controls despite having abnormal foveal anatomy on OCT. Patients averaged shorter latencies in rings 1 and 2 than controls (p = 0.005, p = 0.02). Patients averaged higher amplitudes than controls in rings 4, 5 and 6 (p = 0.03, p = 0.006, p = 0.004). There was no significant correlation between visual acuity and mfERG amplitudes in any ring (smallest p = 0.15). ffERG: Patients averaged higher amplitudes on 30 Hz flicker (p = 0.008). In all conditions, albinism patients had higher amplitude a-waves (p ≤ 0.03). B-waves were higher amplitude than controls in light-adapted 3.0 (p = 0.03). There was no statistical correlation between ffERG amplitudes and visual acuity (smallest p = 0.45). OCT: In albinism patients, thicker central macula on OCT correlated with lower mfERG amplitudes in all rings except for ring 1 (p < 0.05) and lower ffERG a-wave amplitudes on dark-adapted 0.01 (p = 0.003). Macular thickness on OCT did not correlate with visual acuity (p = 0.51); OCT foveal score did (p = 0.0004). CONCLUSIONS: Amplitude of mfERG does not correlate with visual acuity in any ring in patients with albinism. The slope of the change in amplitude from central to peripheral rings on the mferg is significantly different in albinism patients versus controls whether or not nystagmus is present. The decreased slope of change in amplitudes from center to periphery of the macula in albinism patients indicates changes in macular topography that are more important to visual deficits than the foveal depression.


Asunto(s)
Albinismo Oculocutáneo/fisiopatología , Fóvea Central/patología , Retina/fisiopatología , Agudeza Visual/fisiología , Adolescente , Adulto , Niño , Electrorretinografía/métodos , Femenino , Fóvea Central/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Nistagmo Patológico/fisiopatología , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Adulto Joven
10.
PLoS Genet ; 12(4): e1005963, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27058611

RESUMEN

Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.


Asunto(s)
Defectos de los Tabiques Cardíacos/genética , Animales , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación , Linaje
11.
Hum Mol Genet ; 25(1): 44-56, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494905

RESUMEN

Retinitis pigmentosa (RP) is a highly heterogeneous group of disorders characterized by degeneration of the retinal photoreceptor cells and progressive loss of vision. While hundreds of mutations in more than 100 genes have been reported to cause RP, discovering the causative mutations in many patients remains a significant challenge. Exome sequencing in an individual affected with non-syndromic RP revealed two plausibly disease-causing variants in TRNT1, a gene encoding a nucleotidyltransferase critical for tRNA processing. A total of 727 additional unrelated individuals with molecularly uncharacterized RP were completely screened for TRNT1 coding sequence variants, and a second family was identified with two members who exhibited a phenotype that was remarkably similar to the index patient. Inactivating mutations in TRNT1 have been previously shown to cause a severe congenital syndrome of sideroblastic anemia, B-cell immunodeficiency, recurrent fevers and developmental delay (SIFD). Complete blood counts of all three of our patients revealed red blood cell microcytosis and anisocytosis with only mild anemia. Characterization of TRNT1 in patient-derived cell lines revealed reduced but detectable TRNT1 protein, consistent with partial function. Suppression of trnt1 expression in zebrafish recapitulated several features of the human SIFD syndrome, including anemia and sensory organ defects. When levels of trnt1 were titrated, visual dysfunction was found in the absence of other phenotypes. The visual defects in the trnt1-knockdown zebrafish were ameliorated by the addition of exogenous human TRNT1 RNA. Our findings indicate that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina.


Asunto(s)
Nucleotidiltransferasas/genética , Retinitis Pigmentosa/genética , Adolescente , Animales , Proteínas Portadoras , Células Cultivadas , Exoma , Expresión Génica , Humanos , Masculino , Mutación , Nucleótidos/metabolismo , Perilipina-1 , Fosfoproteínas , Empalme del ARN , Análisis de Secuencia de ADN , Adulto Joven , Pez Cebra
12.
Exp Eye Res ; 170: 108-116, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29486162

RESUMEN

The 14-3-3 family of proteins has undergone considerable expansion in higher eukaryotes with humans and mice expressing seven isoforms (ß, ε, η, γ, θ, ζ, and σ) from seven distinct genes (YWHAB, YWAHE, YWHAH, YWHAG, YWHAQ, YWHAZ, and SFN). Growing evidence indicates that while highly conserved, these isoforms are not entirely functionally redundant as they exhibit unique tissue expression profiles, subcellular localization, and biochemical functions. A key limitation in our understanding of 14-3-3 biology lies in our limited knowledge of cell-type specific 14-3-3 expression. Here we provide a characterization of 14-3-3 expression in whole retina and isolated rod photoreceptors using reverse-transcriptase digital droplet PCR. We find that all 14-3-3 genes with the exception of SFN are expressed in mouse retina with YWHAQ and YWHAE being the most highly expressed. Rod photoreceptors are enriched in YWHAE (14-3-3 ε). Immunohistochemistry revealed that 14-3-3 ε and 14-3-3 ζ exhibit unique distributions in photoreceptors with 14-3-3 ε restricted to the inner segment and 14-3-3 ζ localized to the outer segment. Our data demonstrates that, in the retina, 14-3-3 isoforms likely serve specific functions as they exhibit unique expression levels and cell-type specificity. As such, future investigations into 14-3-3 function in rod photoreceptors should be centered on 14-3-3 ε and 14-3-3 ζ, depending on the subcellular region of question.


Asunto(s)
Proteínas 14-3-3/genética , Regulación de la Expresión Génica/fisiología , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Western Blotting , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Plásmidos , Isoformas de Proteínas/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Nature ; 482(7386): 529-33, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22343890

RESUMEN

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Asunto(s)
Evolución Clonal/genética , Meduloblastoma/genética , Meduloblastoma/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Animales , Islas de CpG/genética , Metilación de ADN , Elementos Transponibles de ADN/genética , Modelos Animales de Enfermedad , Genes p53/genética , Mutación de Línea Germinal/genética , Humanos , Síndrome de Li-Fraumeni/complicaciones , Síndrome de Li-Fraumeni/genética , Meduloblastoma/complicaciones , Ratones , Mutagénesis Insercional , Tasa de Supervivencia
14.
Int J Cancer ; 140(4): 853-863, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27790711

RESUMEN

Colorectal cancer (CRC) results from the accumulation of gene mutations and epigenetic alterations in colon epithelial cells, which promotes CRC formation through deregulating signaling pathways. One of the most commonly deregulated signaling pathways in CRC is the transforming growth factor ß (TGF-ß) pathway. Importantly, the effects of TGF-ß signaling inactivation in CRC are modified by concurrent mutations in the tumor cell, and these concurrent mutations determine the ultimate biological effects of impaired TGF-ß signaling in the tumor. However, many of the mutations that cooperate with the deregulated TGF-ß signaling pathway in CRC remain unknown. Therefore, we sought to identify candidate driver genes that promote the formation of CRC in the setting of TGF-ß signaling inactivation. We performed a forward genetic screen in mice carrying conditionally inactivated alleles of the TGF-ß receptor, type II (Tgfbr2) using Sleeping Beauty (SB) transposon mediated mutagenesis. We used TAPDANCE and Gene-centric statistical methods to identify common insertion sites (CIS) and, thus, candidate tumor suppressor genes and oncogenes within the tumor genome. CIS analysis of multiple neoplasms from these mice identified many candidate Tgfbr2 cooperating genes and the Wnt/ß-catenin, Hippo and MAPK pathways as the most commonly affected pathways. Importantly, the majority of candidate genes were also found to be mutated in human CRC. The SB transposon system provides an unbiased method to identify Tgfbr2 cooperating genes in mouse CRC that are functionally relevant and that may provide further insight into the pathogenesis of human CRC.


Asunto(s)
Adenocarcinoma/genética , Adenoma/genética , Neoplasias Colorrectales/genética , Elementos Transponibles de ADN , Genes Relacionados con las Neoplasias , Genes Supresores de Tumor , Estudios de Asociación Genética/métodos , Mutagénesis Insercional , Proteínas de Neoplasias/fisiología , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/fisiología , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Animales , Neoplasias Colorrectales/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/deficiencia , Receptores de Factores de Crecimiento Transformadores beta/genética , Análisis de Secuencia de ADN , Transducción de Señal/fisiología , Especificidad de la Especie
15.
Am J Hum Genet ; 95(4): 445-53, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25262649

RESUMEN

Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.


Asunto(s)
Etnicidad/genética , Evolución Molecular , Exoma/genética , Variación Genética/genética , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Estudios de Casos y Controles , Conexina 26 , Conexinas , Frecuencia de los Genes , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Filogenia
16.
Mol Vis ; 23: 179-184, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28400699

RESUMEN

PURPOSE: Lacrimo-auriculo-dento-digital (LADD) syndrome is an autosomal dominant disorder displaying variable expression of multiple congenital anomalies including hypoplasia or aplasia of the lacrimal and salivary systems causing abnormal tearing and dry mouth. Mutations in the FGF10, FGFR2, and FGFR3 genes were found to cause some cases of LADD syndrome in prior genetic studies. The goal of this study is to identify the genetic basis of a case of LADD syndrome with glaucoma and thin central corneal thickness (CCT). METHODS: Whole exome sequencing was performed, and previously described disease-causing genes (FGF10, FGFR2, and FGFR3) were first evaluated for mutations. Fifty-eight additional prioritized candidate genes were identified by searching gene annotations for features of LADD syndrome. The potential pathogenicity of the identified mutations was assessed by determining their frequency in large public exome databases; through sequence analysis using the Blosum62 matrix, PolyPhen2, and SIFT algorithms; and through homology analyses. A structural analysis of the effects of the top candidate mutation in tumor protein 63 (TP63) was also conducted by superimposing the mutation over the solved crystal structure. RESULTS: No mutations were detected in FGF10, FGFR2, or FGFR3. The LADD syndrome patient's exome data was searched for mutations in the 58 candidate genes and only one mutation was detected, an Arg343Trp mutation in the tumor protein 63 (TP63) gene. This TP63 mutation is absent from the gnomAD sequence database. Analysis of the Arg343Trp mutation with Blosum62, PolyPhen2, and SIFT all suggest it is pathogenic. This arginine residue is highly conserved in orthologous genes. Finally, crystal structure analysis showed that the Arg343Trp mutation causes a significant alteration in the structure of TP63's DNA binding domain. CONCLUSIONS: We report a patient with no mutations in known LADD syndrome genes (FGF10, FGFR2, and FGFR3). Our analysis provides strong evidence that the Arg343Trp mutation in TP63 caused LADD syndrome in our patient and that TP63 is a fourth gene contributing to this condition. TP63 encodes a transcription factor involved in the development and differentiation of tissues affected by LADD syndrome. These data suggest that TP63 is a novel LADD syndrome gene and may also influence corneal thickness and risk for open-angle glaucoma.


Asunto(s)
Anomalías Múltiples/genética , Predisposición Genética a la Enfermedad , Glaucoma/complicaciones , Glaucoma/genética , Pérdida Auditiva/complicaciones , Pérdida Auditiva/genética , Enfermedades del Aparato Lagrimal/complicaciones , Enfermedades del Aparato Lagrimal/genética , Sindactilia/complicaciones , Sindactilia/genética , Anomalías Dentarias/complicaciones , Anomalías Dentarias/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Secuencia de Aminoácidos , Secuencia Conservada , Humanos , Modelos Moleculares , Factores de Transcripción/química , Proteínas Supresoras de Tumor/química
17.
Ophthalmology ; 124(9): 1314-1331, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28559085

RESUMEN

PURPOSE: To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician. DESIGN: Retrospective series. PARTICIPANTS: One thousand consecutive families seen by a single clinician. METHODS: The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000. MAIN OUTCOME MEASURES: Sensitivity and false genotype rate. RESULTS: Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001). CONCLUSIONS: Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Proteínas del Ojo/genética , Mutación , Enfermedades de la Retina/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Análisis Mutacional de ADN , Exoma/genética , Salud de la Familia , Femenino , Pruebas Genéticas , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Estudios Retrospectivos , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Estados Unidos
18.
J Pathol ; 238(3): 446-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26564985

RESUMEN

Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that endothelial cell drop-out is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat-inactivated serum, which lacks complement components. Cells exposed to complement components in human serum showed increased labelling with antibodies directed against the MAC, time- and dose-dependent cell death, as assessed by lactate dehydrogenase assay and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteinase (MMP)-3 and -9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5-depleted serum compared to C5-reconstituted serum. Increased levels of MMP9 were also established, using western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells.


Asunto(s)
Coroides/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/farmacología , Células Endoteliales/inmunología , Degeneración Macular/etiología , Anciano , Anciano de 80 o más Años , Anticuerpos/metabolismo , Muerte Celular/fisiología , Células Cultivadas , Coroides/irrigación sanguínea , Activación de Complemento/fisiología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Degeneración Macular/inmunología , Degeneración Macular/patología , Masculino , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Hum Mutat ; 37(8): 727-31, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27060491

RESUMEN

We investigated the cause of situs inversus totalis (SIT) in two siblings from a consanguineous family. Genotyping and whole-exome analysis revealed a homozygous change in NME7, resulting in deletion of an exon causing an in-frame deletion of 34 amino acids located in the second NDK domain of the protein and segregated with the defective lateralization in the family. NME7 is an important developmental gene, and NME7 protein is a component of the γ-tubulin ring complex. This mutation is predicted to affect the interaction of NME7 protein with this complex as it deletes the amino acids crucial for the binding. SIT associated with homozygous deletion in our patients is in line with Nme7(-/-) mutant mice phenotypes consisting of congenital hydrocephalus and SIT, indicating a novel human laterality patterning role for NME7. Further cases are required to elaborate the full human phenotype associated with NME7 mutations.


Asunto(s)
Nucleósido-Difosfato Quinasa/genética , Eliminación de Secuencia , Situs Inversus/genética , Secuencia de Aminoácidos , Femenino , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Nucleósido-Difosfato Quinasa/química , Nucleósido-Difosfato Quinasa/metabolismo , Linaje , Dominios Proteicos
20.
J Biol Chem ; 290(3): 1505-21, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25468907

RESUMEN

In photoreceptor synaptic terminals, voltage-gated Cav1.4 channels mediate Ca(2+) signals required for transmission of visual stimuli. Like other high voltage-activated Cav channels, Cav1.4 channels are composed of a main pore-forming Cav1.4 α1 subunit and auxiliary ß and α2δ subunits. Of the four distinct classes of ß and α2δ, ß2 and α2δ4 are thought to co-assemble with Cav1.4 α1 subunits in photoreceptors. However, an understanding of the functional properties of this combination of Cav subunits is lacking. Here, we provide evidence that Cav1.4 α1, ß2, and α2δ4 contribute to Cav1.4 channel complexes in the retina and describe their properties in electrophysiological recordings. In addition, we identified a variant of ß2, named here ß2X13, which, along with ß2a, is present in photoreceptor terminals. Cav1.4 α1, ß2, and α2δ4 were coimmunoprecipitated from lysates of transfected HEK293 cells and mouse retina and were found to interact in the outer plexiform layer of the retina containing the photoreceptor synaptic terminals, by proximity ligation assays. In whole-cell patch clamp recordings of transfected HEK293T cells, channels (Cav1.4 α1 + ß2X13) containing α2δ4 exhibited weaker voltage-dependent activation than those with α2δ1. Moreover, compared with channels (Cav1.4 α1 + α2δ4) with ß2a, ß2X13-containing channels exhibited greater voltage-dependent inactivation. The latter effect was specific to Cav1.4 because it was not seen for Cav1.2 channels. Our results provide the first detailed functional analysis of the Cav1.4 subunits that form native photoreceptor Cav1.4 channels and indicate potential heterogeneity in these channels conferred by ß2a and ß2X13 variants.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio/metabolismo , Regulación de la Expresión Génica , Retina/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Células HEK293 , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA