Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 40(28): 14515-14526, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38951962

RESUMEN

Thermoresponsive microgels experience a volume phase transition triggered by temperature changes, a phenomenon often analyzed using dynamic light scattering to observe overall size alterations via the diffusion coefficient. However, local structural changes are typically assessed using more intricate and expensive techniques like small-angle neutron or X-ray scattering. In our research, we investigate the volume phase transition of poly-N-isopropylacrylamide (PNIPAM)-based microgels by employing a combination of temperature-dependent dynamic light scattering and simpler, faster, and more efficient attenuation measurements. We utilize attenuation at a fixed wavelength as a direct measure of dispersion turbidity, linking the absolute changes in hydrodynamic radius to the absolute changes in turbidity. This approach allows us to compare "classical" PNIPAM microgels from precipitation polymerization, charged copolymer microgels from precipitation copolymerization, and core-shell microgels from seeded precipitation polymerization. Our study includes a systematic analysis and comparison of 30 different microgels. By directly comparing data from dynamic light scattering and attenuation spectroscopy, we gain insights into structural heterogeneity and deviations from the established fuzzy sphere morphology. Furthermore, we demonstrate how turbidity data can be converted to swelling curves.

2.
Soft Matter ; 20(7): 1620-1628, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38275297

RESUMEN

Colloidal crystals, such as opals, display bright and iridescent colors when assembled from submicron particles. While the brightness and purity of iridescent colors are well suited for ornaments, signaling, and anticounterfeiting, their angle dependence limits the range of their applications. In contrast, colloidal glasses display angle-independent structural color that is tunable by the size and local arrangement of particles. However, the angle-independent color of colloidal photonic glasses usually yields pastel colors that are not vivid due to the disorder in the particle assembly. Here, we report an electrophoretic assembly platform for tuning the level of disorder in the particle system from a colloidal crystal to a colloidal glass. Altering the electric field in our electrophoretic platform allows for deliberate control of the assembly kinetics and thus the level of order in the particle assembly. With the help of microscopy, X-ray scattering, and optical characterization, we show that the photonic properties of the assembled films can be tuned with the applied electric field. Our analyses reveal that angle-independent color with optimum color brightness can be achieved in typical colloidal suspensions when the range of order is at ∼3.2 particle diameters, which is expected at a moderate electric field of ∼15 V mm-1.

3.
Opt Express ; 31(11): 18509-18515, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381560

RESUMEN

We numerically study the statistical fluctuations of photonic band gaps in ensembles of stealthy hyperuniform disordered patterns. We find that at low stealthiness, where correlations are weak, band gaps of different system realizations appear over a wide frequency range, are narrow, and generally do not overlap. Interestingly, above a critical value of stealthiness χ≳0.35, the bandgaps become large and overlap significantly from realization to realization, while a second gap appears. These observations extend our understanding of photonic bandgaps in disordered systems and provide information on the robustness of gaps in practical applications.

4.
Soft Matter ; 19(40): 7717-7723, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37789800

RESUMEN

Color can originate from wavelength-dependence in the absorption of pigments or the scattering of nanostructures. While synthetic colors are dominated by the former, vivid structural colors found in nature have inspired much research on the latter. However, many of the most vibrant colors in nature involve the interactions of structure and pigment. Here, we demonstrate that pigment can be exploited to efficiently create bright structural color at wavelengths outside its absorption band. We created pigment-enhanced Bragg reflectors by sequentially spin-coating layers of poly-vinyl alcohol (PVA) and polystyrene (PS) loaded with ß-carotene (BC). With only 10 double layers, we achieved a peak reflectance over 0.8 at 550 nm and normal incidence. A pigment-free multilayer made of the same materials would require 25 double layers to achieve the same reflectance. Further, pigment loading suppressed the Bragg reflector's characteristic iridescence. Using numerical simulations, we further show that similar pigment loadings could significantly expand the gamut of non-iridescent colors addressable by photonic glasses.

5.
Opt Express ; 30(17): 30991-31001, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242192

RESUMEN

We present a laser-speckle imaging technique, termed Echo speckle imaging (ESI), that quantifies the local dynamics in biological tissue and soft materials with a noise level around or below 10% of the measured signal without affecting the spatial resolution. We achieve this through an unconventional speckle beam illumination that creates changing, statistically independent illumination conditions and substantially increases the measurement accuracy. Control experiments for dynamically homogeneous and heterogeneous soft materials and tissue phantoms illustrate the performance of the method. We show that this approach enables us to precision-monitor purely dynamic heterogeneities in turbid soft media with a lateral resolution of 100 µm and better.


Asunto(s)
Diagnóstico por Imagen , Iluminación , Fantasmas de Imagen
6.
Opt Lett ; 47(6): 1439-1441, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290333

RESUMEN

Frequency-dependent intensity correlation function measurements can be employed to determine the optical turbidity of solid disordered dielectrics. Here we demonstrate a speckle frequency correlation experiment with a focused beam and using an area detector. We show how to apply frequency correlation measurements to optically thin solid samples with the aim of determining the light diffusion coefficient and transport mean free path ℓ*. To give a practical example, we extract the optical transport mean free path of PTFE (Teflon) slabs, with a thickness of L = 0.4-3.5 mm, covering optical densities L/ℓ* ∼ 4-15.

7.
Opt Lett ; 47(7): 1838, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363748

RESUMEN

This publisher's note contains a correction to Opt. Lett.47, 1439 (2022)10.1364/OL.449084.

8.
Phys Rev Lett ; 129(15): 157402, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269948

RESUMEN

We propose a framework that unifies the description of light transmission through three-dimensional amorphous dielectric materials that exhibit both localization and a photonic bandgap. We argue that direct, coherent reflection near and in the bandgap attenuates the generation of diffuse or localized photons. Using the self-consistent theory of localization and considering the density of states of photons, we can quantitatively describe the total transmission of light for all transport regimes: transparency, light diffusion, localization, and bandgap. Comparison with numerical simulations of light transport through hyperuniform networks supports our theoretical approach.

9.
Proc Natl Acad Sci U S A ; 116(16): 7766-7771, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30923111

RESUMEN

Motivated by improvements in diffusing wave spectroscopy (DWS) for nonergodic, highly optically scattering soft matter and by cursory treatment of collective scattering effects in prior DWS microrheology experiments, we investigate the low-frequency plateau elastic shear moduli [Formula: see text] of concentrated, monodisperse, disordered oil-in-water emulsions as droplets jam. In such experiments, the droplets play dual roles both as optical probes and as the jammed objects that impart shear elasticity. Here, we demonstrate that collective scattering significantly affects DWS mean-square displacements (MSDs) in dense colloidal emulsions. By measuring and analyzing the scattering mean free path as a function of droplet volume fraction φ, we obtain a φ-dependent average structure factor. We use this to correct DWS MSDs by up to a factor of 4 and then calculate [Formula: see text] predicted by the generalized Stokes-Einstein relation. We show that DWS-microrheological [Formula: see text] agrees well with mechanically measured [Formula: see text] over about three orders of magnitude when droplets are jammed but only weakly deformed. Moreover, both of these measurements are consistent with predictions of an entropic-electrostatic-interfacial (EEI) model, based on quasi-equilibrium free-energy minimization of disordered, screened-charge-stabilized, deformable droplets, which accurately describes prior mechanical measurements of [Formula: see text] made on similar disordered monodisperse emulsions over a wide range of droplet radii and φ. This very good quantitative agreement between DWS microrheology, mechanical rheometry, and the EEI model provides a comprehensive and self-consistent view of weakly jammed emulsions. Extensions of this approach may improve DWS microrheology on other systems of dense, jammed colloids that are highly scattering.

10.
Small ; 17(44): e2103061, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34558188

RESUMEN

Polymers are essential components of many nanostructured materials. However, the refractive indices of common polymers fall in a relatively narrow range between 1.4 and 1.6. Here, it is demonstrated that loading commercially-available polymers with large concentrations of a plant-based pigment can effectively enhance their refractive index. For polystyrene (PS) loaded with 67 w/w% ß-carotene (BC), a peak value of 2.2 near the absorption edge at 531 nm is achieved, while maintaining values above 1.75 across longer wavelengths of the visible spectrum. Despite high pigment loadings, this blend maintains the thermoforming ability of PS, and BC remains molecularly dispersed. Similar results are demonstrated for the plant-derived polymer ethyl cellulose (EC). Since the refractive index enhancement is intimately connected to the introduction of strong absorption, it is best suited to applications where light travels short distances through the material, such as reflectors and nanophotonic systems. Enhanced reflectance from films is experimentally demonstrated, as large as sevenfold for EC at selected wavelengths. Theoretical calculations highlight that this simple strategy can significantly increase light scattering by nanoparticles and enhance the performance of Bragg reflectors.


Asunto(s)
Nanopartículas , Nanoestructuras , Polímeros , Poliestirenos , Refractometría
11.
Opt Express ; 29(10): 14367-14383, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985161

RESUMEN

Disordered dielectrics with structural correlations on length scales comparable to visible light wavelengths exhibit interesting optical properties. Such materials exist in nature, leading to beautiful structural non-iridescent color, and they are also increasingly used as building blocks for optical materials and coatings. In this article, we explore the angular resolved single-scattering properties of micron-sized, disordered colloidal assemblies. The aggregates act as structurally colored supraparticles or as building blocks for macroscopic photonic glasses. We obtain first experimental data for the differential scattering and transport cross-section. Based on existing macroscopic models, we develop a theoretical framework to describe the scattering from densely packed colloidal assemblies on a hierarchy of length scales.

12.
Phys Rev Lett ; 125(12): 127402, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016709

RESUMEN

We present wave transport experiments in hyperuniform disordered arrays of cylinders with high dielectric permittivity. Using microwaves, we show that the same material can display transparency, photon diffusion, Anderson localization, or a full band gap, depending on the frequency ν of the electromagnetic wave. Interestingly, we find a second weaker band gap, which appears to be related to the second peak of the structure factor. Our results emphasize the importance of spatial correlations on different length scales for the formation of photonic band gaps.

13.
Proc Natl Acad Sci U S A ; 114(36): 9570-9574, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28831009

RESUMEN

Disordered dielectric materials with structural correlations show unconventional optical behavior: They can be transparent to long-wavelength radiation, while at the same time have isotropic band gaps in another frequency range. This phenomenon raises fundamental questions concerning photon transport through disordered media. While optical transparency in these materials is robust against recurrent multiple scattering, little is known about other transport regimes like diffusive multiple scattering or Anderson localization. Here, we investigate band gaps, and we report Anderson localization in 2D disordered dielectric structures using numerical simulations of the density of states and optical transport statistics. The disordered structures are designed with different levels of positional correlation encoded by the degree of stealthiness [Formula: see text] To establish a unified view, we propose a correlation-frequency ([Formula: see text]-[Formula: see text]) transport phase diagram. Our results show that, depending only on [Formula: see text], a dielectric material can transition from localization behavior to a band gap crossing an intermediate regime dominated by tunneling between weakly coupled states.

14.
Phys Rev Lett ; 122(10): 108002, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932679

RESUMEN

We study experimentally the origin of heterogeneous dynamics in strongly driven glass-forming systems. Thereto, we apply a well-defined force with a laser line trap on individual colloidal polystyrene probe particles seeded in an emulsion glass composed of droplets of the same size. Fluid and glass states can be probed. We monitor the trajectories of the probe and measure displacements and their distributions. Our experiments reveal intermittent dynamics around a depinning transition at a threshold force. For smaller forces, linear response connects mean displacement, and quiescent mean squared displacement. Mode coupling theory calculations rationalize the observations.

15.
Chimia (Aarau) ; 73(1): 43-46, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813996

RESUMEN

We investigate the structure and the dynamics of dense suspensions of NIH 3T3 fibroblast cells. Using two-photon microscopy we obtain three dimensional (3D) images from which the size and the packing structure of the dense cell suspensions can be extracted. In addition, we analyse the global time-dependent behaviour of the suspensions by time-lapse measurements of cell sedimentation. Since cell adhesion is a non-equilibrium living process the interplay can be influenced by cell viability interfering with cell-cell interactions.


Asunto(s)
Fibroblastos , Fotones , Animales , Adhesión Celular , Cinética , Ratones , Células 3T3 NIH , Suspensiones
16.
Chimia (Aarau) ; 73(1): 47-50, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813997

RESUMEN

The natural world is teeming with color, which originates either from the wavelength-dependent absorp- tion of light by pigments or from scattering from nanoscale structures, or both. While the latter ' structural color ' has been a topic of intense study in recent years, the most vibrant colors in nature involve contributions from both structure and pigment. The study of structure-pigment interactions in biological systems is currently in its infancy and could inspire more technological applications, such as sustainable, toxin-free pigments and more efficient light harvesting.

17.
Nat Mater ; 21(9): 994-995, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36002722
18.
Phys Rev Lett ; 117(5): 053902, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517772

RESUMEN

We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.

19.
Opt Express ; 23(23): 29342-52, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26698418

RESUMEN

We study the lifetime of two common fluorescent dye molecules from the Alexa Fluor NHS Ester family dissolved in water in an opaque aqueous dispersion of dielectric polystyrene nanoparticles. We investigate the role of the dispersion composition by varying the particle concentration and adding SDS (sodium dodecyl sulfate) surfactant molecules. The observed strong changes in lifetime of Alexa 430 can be attributed to the relative contribution of radiative and non-radiative decay channels while the lifetime of the Alexa 488 dye depends only weakly on the sample composition. For Alexa 430, a dye with a rather low quantum yield in aqueous solution, the addition of polystyrene nanoparticles leads to a significant enhancement in quantum yield and an associated increase of the fluorescent lifetime by up to 55 %. We speculate that the increased quantum yield can be attributed to the hydrophobic effect on the structure of water in the boundary layer around the polystyrene particles in suspension. Adding SDS acts as a quencher. Over a range of particle concentrations the particle induced increase of the lifetime can be completely compensated by adding SDS.

20.
Opt Express ; 23(17): 22579-86, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26368225

RESUMEN

The precise tracking of micron sized colloidal particles - held in the vicinity of each other using optical tweezers - is an elegant way to gain information about the particle-particle pair interaction potential. The accuracy of the method, however, relies strongly on the tracking precision. Particularly the elimination of systematic errors in the position detection due to overlapping particle diffraction patterns remains a great challenge. Here we propose a template based particle finding algorithm that circumvents these problems by tracking only a fraction of the particle image that is insignificantly affected by nearby colloids. Under realistic experimental conditions we show that our algorithm significantly reduces systematic errors compared to standard tracking methods. Moreover our approach should in principle be applicable to almost arbitrary shaped particles as the template can be adapted to any geometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA