Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Gut ; 71(12): 2414-2429, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34862250

RESUMEN

OBJECTIVE: Bleeding ulcers and erosions are hallmarks of active ulcerative colitis (UC). However, the mechanisms controlling bleeding and mucosal haemostasis remain elusive. DESIGN: We used high-resolution endoscopy and colon tissue samples of active UC (n = 36) as well as experimental models of physical and chemical mucosal damage in mice deficient for peptidyl-arginine deiminase-4 (PAD4), gnotobiotic mice and controls. We employed endoscopy, histochemistry, live-cell microscopy and flow cytometry to study eroded mucosal surfaces during mucosal haemostasis. RESULTS: Erosions and ulcerations in UC were covered by fresh blood, haematin or fibrin visible by endoscopy. Fibrin layers rather than fresh blood or haematin on erosions were inversely correlated with rectal bleeding in UC. Fibrin layers contained ample amounts of neutrophils coaggregated with neutrophil extracellular traps (NETs) with detectable activity of PAD. Transcriptome analyses showed significantly elevated PAD4 expression in active UC. In experimentally inflicted wounds, we found that neutrophils underwent NET formation in a PAD4-dependent manner hours after formation of primary blood clots, and remodelled clots to immunothrombi containing citrullinated histones, even in the absence of microbiota. PAD4-deficient mice experienced an exacerbated course of dextrane sodium sulfate-induced colitis with markedly increased rectal bleeding (96 % vs 10 %) as compared with controls. PAD4-deficient mice failed to remodel blood clots on mucosal wounds eliciting impaired healing. Thus, NET-associated immunothrombi are protective in acute colitis, while insufficient immunothrombosis is associated with rectal bleeding. CONCLUSION: Our findings uncover that neutrophils induce secondary immunothrombosis by PAD4-dependent mechanisms. Insufficient immunothrombosis may favour rectal bleeding in UC.


Asunto(s)
Colitis Ulcerosa , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Arginina Deiminasa Proteína-Tipo 4 , Colitis Ulcerosa/metabolismo , Tromboinflamación , Fibrina/metabolismo
2.
Gut ; 69(7): 1269-1282, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31685519

RESUMEN

OBJECTIVE: Cancer-associated fibroblasts (CAFs) influence the tumour microenvironment and tumour growth. However, the role of CAFs in colorectal cancer (CRC) development is incompletely understood. DESIGN: We quantified phosphorylation of STAT3 (pSTAT3) expression in CAFs of human colon cancer tissue using a tissue microarray (TMA) of 375 patients, immunofluorescence staining and digital pathology. To investigate the functional role of CAFs in CRC, we took advantage of two murine models of colorectal neoplasia and advanced imaging technologies. In loss-of-function and gain-of-function experiments, using genetically modified mice with collagen type VI (COLVI)-specific signal transducer and activator of transcription 3 (STAT3) targeting, we evaluated STAT3 signalling in fibroblasts during colorectal tumour development. We performed a comparative gene expression profiling by whole genome RNA-sequencing of fibroblast subpopulations (COLVI+ vs COLVI-) on STAT3 activation (IL-6 vs IL-11). RESULTS: The analysis of pSTAT3 expression in CAFs of human TMAs revealed a negative correlation of increased stromal pSTAT3 expression with the survival of colon cancer patients. In the loss-of-function and gain-of-function approach, we found a critical role of STAT3 activation in fibroblasts in driving colorectal tumourigenesis in vivo. With different imaging technologies, we detected an expansion of activated fibroblasts in colorectal neoplasias. Comparative gene expression profiling of fibroblast subpopulations on STAT3 activation revealed the regulation of transcriptional patterns associated with angiogenesis. Finally, the blockade of proangiogenic signalling significantly reduced colorectal tumour growth in mice with constitutive STAT3 activation in COLVI+ fibroblasts. CONCLUSION: Altogether our work demonstrates a critical role of STAT3 activation in CAFs in CRC development.


Asunto(s)
Neoplasias Colorrectales/etiología , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Colon/metabolismo , Neoplasias Colorrectales/diagnóstico , Fibroblastos/metabolismo , Humanos , Ratones , Fosforilación , Pronóstico , Análisis de Matrices Tisulares , Transcriptoma
3.
Gastroenterology ; 156(4): 1082-1097.e11, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30452921

RESUMEN

BACKGROUND & AIMS: Intestinal fibrosis is a long-term complication in inflammatory bowel diseases (IBD) that frequently results in functional damage, bowel obstruction, and surgery. Interleukin (IL) 36 is a group of cytokines in the IL1 family with inflammatory effects. We studied the expression of IL36 and its receptor, interleukin 1 receptor like 2 (IL1RL2 or IL36R) in the development of intestinal fibrosis in human tissues and mice. METHODS: We obtained intestinal tissues from 92 patients with Crohn's disease (CD), 48 patients with ulcerative colitis, and 26 patients without inflammatory bowel diseases (control individuals). Tissues were analyzed by histology to detect fibrosis and by immunohistochemistry to determine the distribution of fibroblasts and levels of IL36R ligands. Human and mouse fibroblasts were incubated with IL36 or control medium, and transcriptome-wide RNA sequences were analyzed. Mice were given neutralizing antibodies against IL36R, and we studied intestinal tissues from Il1rl2-/- mice; colitis and fibrosis were induced in mice by repetitive administration of DSS or TNBS. Bone marrow cells were transplanted from Il1rl2-/- to irradiated wild-type mice and intestinal tissues were analyzed. Antibodies against IL36R were applied to mice with established chronic colitis and fibrosis and intestinal tissues were studied. RESULTS: Mucosal and submucosal tissue from patients with CD or ulcerative colitis had higher levels of collagens, including type VI collagen, compared with tissue from control individuals. In tissues from patients with fibrostenotic CD, significantly higher levels of IL36A were noted, which correlated with high numbers of activated fibroblasts that expressed α-smooth muscle actin. IL36R activation of mouse and human fibroblasts resulted in expression of genes that regulate fibrosis and tissue remodeling, as well as expression of collagen type VI. Il1rl2-/- mice and mice given injections of an antibody against IL36R developed less severe colitis and fibrosis after administration of DSS or TNBS, but bone marrow cells from Il1rl2-/- mice did not prevent induction of colitis and fibrosis. Injection of antibodies against IL36R significantly reduced established fibrosis in mice with chronic intestinal inflammation. CONCLUSION: We found higher levels of IL36A in fibrotic intestinal tissues from patients with IBD compared with control individuals. IL36 induced expression of genes that regulate fibrogenesis in fibroblasts. Inhibition or knockout of the IL36R gene in mice reduces chronic colitis and intestinal fibrosis. Agents designed to block IL36R signaling could be developed for prevention and treatment of intestinal fibrosis in patients with IBD.


Asunto(s)
Colitis Ulcerosa/metabolismo , Colágeno Tipo VI/metabolismo , Colon/patología , Enfermedad de Crohn/metabolismo , Interleucina-1/metabolismo , Mucosa Intestinal/patología , Intestino Delgado/patología , Receptores de Interleucina-1/metabolismo , Actinas/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Estudios de Casos y Controles , Células Cultivadas , Colitis/inducido químicamente , Colitis/patología , Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Sulfato de Dextran , Fibroblastos/efectos de los fármacos , Fibrosis , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Interleucina-1/farmacología , Ligandos , Ratones , Ratones Noqueados , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/genética , Transducción de Señal , Transcriptoma , Ácido Trinitrobencenosulfónico
4.
Gut ; 66(5): 823-838, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26783184

RESUMEN

OBJECTIVE: Interleukin (IL)-36R signalling plays a proinflammatory role in different organs including the skin, but the expression of IL-36R ligands and their molecular function in intestinal inflammation are largely unknown. DESIGN: We studied the characteristics of IL-36R ligand expression in IBDs and experimental colitis. The functional role of IL-36R signalling in the intestine was addressed in experimental colitis and wound healing models in vivo by using mice with defective IL-36R signalling (IL-36R-/-) or Myd88, neutralising anti-IL-36R antibodies, recombinant IL-36R ligands and RNA-seq genome expression analysis. RESULTS: Expression of IL-36α and IL-36γ was significantly elevated in active human IBD and experimental colitis. While IL-36γ was predominantly detected in nuclei of the intestinal epithelium, IL-36α was mainly found in the cytoplasm of CD14+ inflammatory macrophages. Functional studies showed that defective IL-36R signalling causes high susceptibility to acute dextran sodium sulfate colitis and impairs wound healing. Mechanistically, IL-36R ligands released upon mucosal damage activated IL-36R+ colonic fibroblasts via Myd88 thereby inducing expression of chemokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6. Moreover, they induced proliferation of intestinal epithelial cells (IECs) and expression of the antimicrobial protein lipocalin 2. Finally, treatment of experimental intestinal wounds with IL-36R ligands significantly accelerated mucosal healing in vivo. CONCLUSIONS: IL-36R signalling is activated upon intestinal damage, stimulates IECs and fibroblasts and drives mucosal healing. Modulation of the IL-36R pathway emerges as a potential therapeutic strategy for induction of mucosal healing in IBD.


Asunto(s)
Colitis/metabolismo , Citocinas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina/metabolismo , Cicatrización de Heridas , Animales , Calgranulina B/biosíntesis , Núcleo Celular/metabolismo , Proliferación Celular , Quimiocinas/metabolismo , Colitis/inducido químicamente , Colitis/genética , Citoplasma/metabolismo , Sulfato de Dextran , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Ligandos , Lipocalina 2/biosíntesis , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Interleucina-1/genética , Transducción de Señal/genética
6.
Cancers (Basel) ; 14(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35326623

RESUMEN

Colorectal cancer (CRC) is a common disease and has limited treatment options. The importance of cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) in CRC has been increasingly recognized. However, the role of CAF subsets in CRC is hardly understood and opposing functions of type I (COL1+) vs. type VI (COL6+) collagen-expressing subsets were reported before with respect to NFκB-related signaling. Here, we have focused on COL1+ fibroblasts, which represent a frequent CAF population in CRC and studied their role upon STAT3 activation in vivo. Using a dual strategy with a conditional gain-of-function and a conditional loss-of-function approach in an in vivo model of colitis-associated cancer, tumor development was evaluated by different readouts, including advanced imaging methodologies, e.g., light sheet microscopy and CT-scan. Our data demonstrate that the inhibition of STAT3 activation in COL1+ fibroblasts reduces tumor burden, whereas the constitutive activation of STAT3 promotes the development of inflammation-driven CRC. In addition, our work characterizes the co-expression and distribution of type I and type VI collagen by CAFs in inflammation-associated colorectal cancer using reporter mice. This work indicates a critical contribution of STAT3 signaling in COL1+ CAFs, suggesting that the blockade of STAT3 activation in type I collagen-expressing fibroblasts could serve as promising therapeutic targets in colitis-associated CRC. In combination with previous work by others and us, our current findings highlight the context-dependent roles of COL1+ CAFs and COL6+ CAFs that might be variable according to the specific pathway activated.

7.
Inflamm Bowel Dis ; 28(11): 1637-1646, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35699622

RESUMEN

BACKGROUND: Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS: Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS: Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS: Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Sulfato de Dextran , Oxazolona , Modelos Animales de Enfermedad , Inflamación
8.
Nat Protoc ; 16(1): 61-85, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33318692

RESUMEN

Despite advances in the detection and therapy of colorectal cancer (CRC) in recent years, CRC has remained a major challenge in clinical practice. Although alternative methods for modeling CRC have been developed, animal models of CRC remain helpful when analyzing molecular aspects of pathogenesis and are often used to perform preclinical in vivo studies of potential therapeutics. This protocol updates our protocol published in 2007, which provided an azoxymethane (AOM)-based setup for investigations into sporadic (Step 5A) and, when combined with dextran sodium sulfate (Step 5B), inflammation-associated tumor growth. This update also extends the applications beyond those of the original protocol by including an option in which AOM is serially applied to mice with p53 deficiency in the intestinal epithelium (Step 5C). In this model, the combination of p53 deficiency and AOM promotes tumor development, including growth of invasive cancers and lymph node metastasis. It also provides details on analysis of colorectal tumor growth and metastasis, including analysis of partial epithelial-to-mesenchymal transition, cell isolation and co-culture studies, high-resolution mini-endoscopy, light-sheet fluorescence microscopy and micro-CT imaging in mice. The target audience for our protocol is researchers who plan in vivo studies to address mechanisms influencing sporadic or inflammation-driven tumor development, including the analysis of local invasiveness and lymph node metastasis. It is suitable for preclinical in vivo testing of novel drugs and other interventional strategies for clinical translation, plus the evaluation of emerging imaging devices/modalities. It can be completed within 24 weeks (using Step 5A/C) or 10 weeks (using Step 5B).


Asunto(s)
Neoplasias del Colon/patología , Inflamación/patología , Metástasis Linfática/patología , Animales , Azoximetano , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/complicaciones , Sulfato de Dextran , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Inflamación/inducido químicamente , Inflamación/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Nat Cell Biol ; 23(7): 796-807, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34239062

RESUMEN

Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.


Asunto(s)
Colitis/metabolismo , Colon/metabolismo , Dinoprostona/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Necroptosis , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Animales , Antiinflamatorios/farmacología , Colitis/inducido químicamente , Colitis/patología , Colitis/prevención & control , Colon/efectos de los fármacos , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Células HT29 , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Necroptosis/efectos de los fármacos , Organoides , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Subtipo EP4 de Receptores de Prostaglandina E/genética , Transducción de Señal
10.
Int J Oncol ; 47(1): 5-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25963636

RESUMEN

The cytoskeleton-associated serine/threonine kinase death-associated protein kinase (DAPK) has been described as a cancer gene chameleon with functional antagonistic duality in a cell type and context specific manner. The broad range of interaction partners and substrates link DAPK to inflammatory processes especially in the gut. Herein we summarize our knowledge on the role of DAPK in different cell types that play a role under inflammatory conditions in the gut. Besides some promising experimental data suggesting DAPK as an interesting drug target in inflammatory bowel disease there are many open questions regarding direct evidence for a role of DAPK in intestinal inflammation.


Asunto(s)
Antiinflamatorios/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Tracto Gastrointestinal/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Animales , Muerte Celular , Neoplasias del Colon/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA