Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Virol ; 96(23): e0087622, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36354340

RESUMEN

The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos T CD4-Positivos , VIH-1 , Proteínas de la Membrana , Replicación Viral , Humanos , Linfocitos T CD4-Positivos/virología , Células HeLa , Proteína gp41 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Ensamble de Virus , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
2.
Br J Cancer ; 125(4): 534-546, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155340

RESUMEN

BACKGROUND: There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. METHODS: We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. RESULTS: FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. CONCLUSION: Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.


Asunto(s)
Neovascularización Patológica/terapia , Fotoquimioterapia/métodos , Neoplasias de la Próstata/terapia , Animales , Línea Celular Tumoral , Terapia Combinada , Fraccionamiento de la Dosis de Radiación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Neoplasias de la Próstata/irrigación sanguínea , Análisis de Supervivencia , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Br J Cancer ; 123(7): 1089-1100, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641865

RESUMEN

BACKGROUND: Radiotherapy enhances innate and adaptive anti-tumour immunity. It is unclear whether this effect may be harnessed by combining immunotherapy with radiotherapy fractions used to treat prostate cancer. We investigated tumour immune microenvironment responses of pre-clinical prostate cancer models to radiotherapy. Having defined this landscape, we tested whether radiotherapy-induced tumour growth delay could be enhanced with anti-PD-L1. METHODS: Hypofractionated radiotherapy was delivered to TRAMP-C1 and MyC-CaP flank allografts. Tumour growth delay, tumour immune microenvironment flow-cytometry, and immune gene expression were analysed. TRAMP-C1 allografts were then treated with 3 × 5 Gy ± anti-PD-L1. RESULTS: 3 × 5 Gy caused tumour growth delay in TRAMP-C1 and MyC-CaP. Tumour immune microenvironment changes in TRAMP-C1 at 7 days post-radiotherapy included increased tumour-associated macrophages and dendritic cells and upregulation of PD-1/PD-L1, CD8+ T-cell, dendritic cell, and regulatory T-cell genes. At tumour regrowth post-3 × 5 Gy the tumour immune microenvironment flow-cytometry was similar to control tumours, however CD8+, natural killer and dendritic cell gene transcripts were reduced. PD-L1 inhibition plus 3 × 5 Gy in TRAMP-C1 did not enhance tumour growth delay versus monotherapy. CONCLUSION: 3 × 5 Gy hypofractionated radiotherapy can result in tumour growth delay and immune cell changes in allograft prostate cancer models. Adjuncts beyond immunomodulation may be necessary to improve the radiotherapy-induced anti-tumour response.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias de la Próstata/terapia , Hipofraccionamiento de la Dosis de Radiación , Microambiente Tumoral , Animales , Antígeno B7-H1/análisis , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase I/análisis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología
4.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31554688

RESUMEN

The MT-4 human T-cell line expresses HTLV-1 Tax and is permissive for replication of an HIV-1 gp41 mutant lacking the cytoplasmic tail. MT-4 cells (lot 150048), distributed by the NIH AIDS Reagent Program (NIH-ARP), were found to be Tax deficient and unable to host replication of the gp41-truncated HIV-1 mutant. These findings, together with short tandem repeat profiling, established that lot 150048 are not bona fide MT-4 cells.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Línea Celular/virología , Linfocitos T/virología , Productos del Gen tax/genética , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/genética , Virus Linfotrópico T Tipo 1 Humano , Humanos , Repeticiones de Microsatélite , National Institutes of Health (U.S.) , Estados Unidos , Replicación Viral
5.
Proc Natl Acad Sci U S A ; 114(49): 13030-13035, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29087320

RESUMEN

Proinflammatory signaling pathways are commonly up-regulated in breast cancer. In estrogen receptor-negative (ER-) and triple-negative breast cancer (TNBC), nitric oxide synthase-2 (NOS2) and cyclooxygenase-2 (COX2) have been described as independent predictors of disease outcome. We further explore these findings by investigating the impact of their coexpression on breast cancer survival. Elevated coexpression of NOS2/COX2 proteins is a strong predictor of poor survival among ER- patients (hazard ratio: 21). Furthermore, we found that the key products of NOS2 and COX2, NO and prostaglandin E2 (PGE2), respectively, promote feed-forward NOS2/COX2 crosstalk in both MDA-MB-468 (basal-like) and MDA-MB-231 (mesenchymal-like) TNBC cell lines in which NO induced COX2 and PGE2 induced NOS2 proteins. COX2 induction by NO involved TRAF2 activation that occurred in a TNFα-dependent manner in MDA-MB-468 cells. In contrast, NO-mediated TRAF2 activation in the more aggressive MDA-MB-231 cells was TNFα independent but involved the endoplasmic reticulum stress response. Inhibition of NOS2 and COX2 using amino-guanidine and aspirin/indomethacin yielded an additive reduction in the growth of MDA-MB-231 tumor xenografts. These findings support a role of NOS2/COX2 crosstalk during disease progression of aggressive cancer phenotypes and offer insight into therapeutic applications for better survival of patients with ER- and TNBC disease.


Asunto(s)
Neoplasias de la Mama/genética , Ciclooxigenasa 2/genética , Regulación Neoplásica de la Expresión Génica , Óxido Nítrico Sintasa de Tipo II/genética , Receptores de Estrógenos/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Aspirina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Retroalimentación Fisiológica , Femenino , Guanidinas/farmacología , Humanos , Indometacina/farmacología , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Pronóstico , Modelos de Riesgos Proporcionales , Receptores de Estrógenos/deficiencia , Transducción de Señal , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Exp Eye Res ; 156: 41-49, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27015931

RESUMEN

Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons.


Asunto(s)
Diferenciación Celular/fisiología , Forma de la Célula/fisiología , Cristalino/citología , Actinas/metabolismo , Animales , Citoesqueleto/fisiología , Humanos , Cristalino/embriología , Morfogénesis , Tubulina (Proteína)/metabolismo
7.
Hum Genet ; 134(7): 717-35, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25896808

RESUMEN

Although majority of the genes linked to early-onset cataract exhibit lens fiber cell-enriched expression, our understanding of gene regulation in these cells is limited to function of just eight transcription factors and largely in the context of crystallins. We report on small Maf transcription factors Mafg and Mafk as regulators of several non-crystallin human cataract-associated genes in fiber cells and establish their significance to this disease. We applied a bioinformatics tool for cataract gene discovery iSyTE to identify Mafg and its co-regulators in the lens, and generated various null-allelic combinations of Mafg:Mafk mouse mutants for phenotypic and molecular analysis. By age 4 months, Mafg-/-:Mafk+/- mutants exhibit lens defects that progressively develop into cataract. High-resolution phenotypic characterization of Mafg-/-:Mafk+/- mouse lens reveals severely disorganized fiber cells, while microarray-based expression profiling identifies 97 differentially regulated genes (DRGs). Integrative analysis of Mafg-/-:Mafk+/- lens-DRGs with (1) binding motifs and genomic targets of small Mafs and their regulatory partners, (2) iSyTE lens expression data, and (3) interactions between DRGs in the String database, unravel a detailed small Maf regulatory network in the lens, several nodes of which are linked to cataract. This approach identifies 36 high-priority candidates from the original 97 DRGs. Significantly, 8/36 (22%) DRGs are associated with cataracts in human (GSTO1, MGST1, SC4MOL, UCHL1) or mouse (Aldh3a1, Crygf, Hspb1, Pcbd1), suggesting a multifactorial etiology that includes oxidative stress and misregulation of sterol synthesis. These data identify Mafg and Mafk as new cataract-associated candidates and define their function in regulating largely non-crystallin genes linked to human cataract.


Asunto(s)
Proteínas del Ojo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Factor de Transcripción MafG , Factor de Transcripción MafK , Proteínas Represoras , Animales , Catarata/genética , Catarata/metabolismo , Catarata/patología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Factor de Transcripción MafG/genética , Factor de Transcripción MafG/metabolismo , Factor de Transcripción MafK/genética , Factor de Transcripción MafK/metabolismo , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
8.
J Cell Mol Med ; 18(4): 656-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24495224

RESUMEN

Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α-smooth muscle actin (α-SMA)-expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting ß-subunits ß1, ß5, ß6, ß8 are up-regulated concomitant with α-SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up-regulated the expression of α-SMA, ß1-integrin, fibronectin, tenascin-C and transforming growth factor beta (TGF-ß)-induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up-regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF-ß activation as αV integrin null lenses do not exhibit detectable SMAD-3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF-ß in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.


Asunto(s)
Opacificación Capsular/metabolismo , Opacificación Capsular/patología , Extracción de Catarata/efectos adversos , Integrina alfaV/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Actinas/biosíntesis , Animales , Opacificación Capsular/etiología , Proliferación Celular , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Cápsula del Cristalino/metabolismo , Cápsula del Cristalino/patología , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/patología , Proteína smad3/biosíntesis , Cicatrización de Heridas
9.
Redox Biol ; 58: 102529, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375380

RESUMEN

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in ∼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Linfocitos T CD8-positivos/metabolismo , Orientación Espacial , Inmunoterapia , Progresión de la Enfermedad , Linfocitos/metabolismo , Indometacina/farmacología , Indometacina/metabolismo , Indometacina/uso terapéutico
10.
Commun Biol ; 4(1): 477, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859337

RESUMEN

The tumor microenvironment (TME) is multi-cellular, spatially heterogenous, and contains cell-generated gradients of soluble molecules. Current cell-based model systems lack this complexity or are difficult to interrogate microscopically. We present a 2D live-cell chamber that approximates the TME and demonstrate that breast cancer cells and macrophages generate hypoxic and nutrient gradients, self-organize, and have spatially varying phenotypes along the gradients, leading to new insights into tumorigenesis.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Carcinogénesis , Macrófagos/fisiología , Células Tumorales Cultivadas/fisiología , Microambiente Tumoral , Animales , Técnicas de Cultivo de Célula , Ratones
11.
Redox Biol ; 28: 101354, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683257

RESUMEN

The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2-/- mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.


Asunto(s)
Citocinas/metabolismo , Lipopolisacáridos/efectos adversos , Óxido Nítrico Sintasa de Tipo II/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Trasplante de Neoplasias , Óxido Nítrico/metabolismo , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
12.
Mech Dev ; 131: 86-110, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24161570

RESUMEN

SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFß signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts.


Asunto(s)
Cadherinas/genética , Enfermedad de Hirschsprung/genética , Discapacidad Intelectual/genética , Cristalino/crecimiento & desarrollo , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Animales , Biomarcadores , Cadherinas/metabolismo , Diferenciación Celular/genética , Ectodermo/crecimiento & desarrollo , Ectodermo/metabolismo , Células Epiteliales/metabolismo , Facies , Regulación del Desarrollo de la Expresión Génica , Cristalino/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia de ARN
13.
Int J Biochem Cell Biol ; 50: 132-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24607497

RESUMEN

ß1-Integrin is a heterodimeric transmembrane protein that has roles in both cell-extra-cellular matrix and cell-cell interactions. Conditional deletion of ß1-integrin from all lens cells during embryonic development results in profound lens defects, however, it is less clear whether this reflects functions in the lens epithelium alone or whether this protein plays a role in lens fibers. Thus, a conditional approach was used to delete ß1-integrin solely from the lens fiber cells. This deletion resulted in two distinct phenotypes with some lenses exhibiting cataracts while others were clear, albeit with refractive defects. Analysis of "clear" conditional knockout lenses revealed that they had profound defects in fiber cell morphology associated with the loss of the F-actin network. Physiological measurements found that the lens fiber cells had a twofold increase in gap junctional coupling, perhaps due to differential localization of connexins 46 and 50, as well as increased water permeability. This would presumably facilitate transport of ions and nutrients through the lens, and may partially explain how lenses with profound structural abnormalities can maintain transparency. In summary, ß1-integrin plays a role in maintaining the cellular morphology and homeostasis of the lens fiber cells.


Asunto(s)
Integrina beta1/metabolismo , Cristalino/citología , Cristalino/metabolismo , Actinas/metabolismo , Alelos , Animales , Diferenciación Celular/fisiología , Conexinas/metabolismo , Citoesqueleto/metabolismo , Homeostasis , Integrina beta1/biosíntesis , Integrina beta1/genética , Cristalino/ultraestructura , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Rastreo/métodos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA