Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mikrochim Acta ; 191(5): 242, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573524

RESUMEN

Molecularly imprinted polymer (MIP) nanofilms for alpha-fetoprotein (AFP) and the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 using either a peptide (epitope-MIP) or the whole protein (protein-MIP) as the template were prepared by electropolymerization of scopoletin. Conducting atomic force microscopy revealed after template removal and electrochemical deposition of gold a larger surface density of imprinted cavities for the epitope-imprinted polymers than when using the whole protein as template. However, comparable affinities towards the respective target protein (AFP and RBD) were obtained for both types of MIPs as expressed by the KD values in the lower nanomolar range. On the other hand, while the cross reactivity of both protein-MIPs towards human serum albumin (HSA) amounts to around 50% in the saturation region, the nonspecific binding to the respective epitope-MIPs is as low as that for the non-imprinted polymer (NIP). This effect might be caused by the different sizes of the imprinted cavities. Thus, in addition to the lower costs the reduced nonspecific binding is an advantage of epitope-imprinted polymers for the recognition of proteins.


Asunto(s)
COVID-19 , alfa-Fetoproteínas , Humanos , SARS-CoV-2 , Epítopos , Polímeros Impresos Molecularmente , Polímeros
2.
Sensors (Basel) ; 20(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397160

RESUMEN

Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.

3.
Sensors (Basel) ; 16(3): 272, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26907299

RESUMEN

For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP).


Asunto(s)
Técnicas Biosensibles/métodos , Hemoproteínas/aislamiento & purificación , Impresión Molecular , Peróxidos/química , Catálisis , Electrodos , Transporte de Electrón , Oro/química , Hemoproteínas/química , Polímeros/química , Propiedades de Superficie
4.
Chemistry ; 21(20): 7596-602, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25825040

RESUMEN

Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant ks values between 0.93 and 2.86 s(-1) and apparent formal potentials ${E{{0{^{\prime }}\hfill \atop {\rm app}\hfill}}}$ between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH.


Asunto(s)
Enzimas Inmovilizadas/química , Hemoproteínas/química , Tirosina/química , Catálisis , Electrodos , Transporte de Electrón , Oro/química , Cinética , Modelos Moleculares
5.
Sensors (Basel) ; 14(5): 7647-54, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24776936

RESUMEN

We present an electrochemical MIP sensor for tamoxifen (TAM)-a nonsteroidal anti-estrogen-which is based on the electropolymerisation of an O-phenylenediamine‒resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only "bulk" MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at +1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences.


Asunto(s)
Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , Electrodos , Impresión Molecular/métodos , Polímeros/química , Tamoxifeno/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Moduladores Selectivos de los Receptores de Estrógeno/análisis , Moduladores Selectivos de los Receptores de Estrógeno/química , Sensibilidad y Especificidad , Tamoxifeno/química
6.
Anal Bioanal Chem ; 405(20): 6437-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23660694

RESUMEN

We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm(-2). In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30% of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA-SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA-MIP-modified electrode occurred with an affinity constant of 100,000 mol(-1) L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins.


Asunto(s)
Citocromos c/química , Técnicas Electroquímicas/instrumentación , Transporte de Electrón/fisiología , Impresión Molecular/métodos , Citocromos c/metabolismo , Técnicas Electroquímicas/métodos , Electrodos , Fluorescencia , Membranas Artificiales , Polímeros/química , Unión Proteica , Escopoletina/química
7.
Angew Chem Int Ed Engl ; 52(44): 11521-5, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24038983

RESUMEN

Make it simple: A molecularly imprinted electropolymer was combined with an enzyme in a catalytic biomimetic sensor that enabled interference-free detection of the drug aminopyrine (AP) at submicromolar concentrations in the presence of ascorbic acid and uric acid within 15 s. The sensor functioned by the peroxide-dependent conversion of AP in a layer above a product-imprinted electropolymer on an indicator electrode.


Asunto(s)
Biomimética/instrumentación , Técnicas Biosensibles/instrumentación , Impresión Molecular/métodos , Biocatálisis , Catálisis , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-37884758

RESUMEN

Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.

10.
Anal Bioanal Chem ; 402(1): 405-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22038589

RESUMEN

The aromatic peroxygenase (APO; EC 1.11.2.1) from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of -278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe(2+)/Fe(3+) redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed.


Asunto(s)
Técnicas Biosensibles/instrumentación , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Marasmius/enzimología , Oxigenasas de Función Mixta/química , Técnicas Biosensibles/métodos , Especificidad por Sustrato
11.
Chem Sci ; 13(5): 1263-1269, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35222909

RESUMEN

We introduce a practically generic approach for the generation of epitope-imprinted polymer-based microarrays for protein recognition on surface plasmon resonance imaging (SPRi) chips. The SPRi platform allows the subsequent rapid screening of target binding kinetics in a multiplexed and label-free manner. The versatility of such microarrays, both as synthetic and screening platform, is demonstrated through developing highly affine molecularly imprinted polymers (MIPs) for the recognition of the receptor binding domain (RBD) of SARS-CoV-2 spike protein. A characteristic nonapeptide GFNCYFPLQ from the RBD and other control peptides were microspotted onto gold SPRi chips followed by the electrosynthesis of a polyscopoletin nanofilm to generate in one step MIP arrays. A single chip screening of essential synthesis parameters, including the surface density of the template peptide and its sequence led to MIPs with dissociation constants (K D) in the lower nanomolar range for RBD, which exceeds the affinity of RBD for its natural target, angiotensin-convertase 2 enzyme. Remarkably, the same MIPs bound SARS-CoV-2 virus like particles with even higher affinity along with excellent discrimination of influenza A (H3N2) virus. While MIPs prepared with a truncated heptapeptide template GFNCYFP showed only a slightly decreased affinity for RBD, a single mismatch in the amino acid sequence of the template, i.e. the substitution of the central cysteine with a serine, fully suppressed the RBD binding.

12.
Nanoscale ; 14(48): 18106-18114, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36448745

RESUMEN

Here we aim to gain a mechanistic understanding of the formation of epitope-imprinted polymer nanofilms using a non-terminal peptide sequence, i.e. the peptide GFNCYFP (G485 to P491) of the SARS-CoV-2 receptor binding domain (RBD). This epitope is chemisorbed on the gold surface through the central cysteine 488 followed by the electrosynthesis of a ∼5 nm thick polyscopoletin film around the surface confined templates. The interaction of peptides and the parent RBD and spike protein with the imprinted polyscopoletin nanofilm was followed by electrochemical redox marker gating, surface enhanced infrared absorption spectroscopy and conductive AFM. Because the use of non-terminal epitopes is especially intricate, here we characterize the binding pockets through their interaction with 5 peptides rationally derived from the template sequence, i.e. implementing central single amino acid mismatch as well as elongations and truncations at its C- and N- termini. Already a single amino acid mismatch, i.e. the central Cys488 substituted by a serine, results in ca. 15-fold lower affinity. Further truncation of the peptides to tetrapeptide (EGFN) and hexapeptide (YFPLQS) results also in a significantly lower affinity. We concluded that the affinity towards the different peptides is mainly determined by the four amino acid motif CYFP present in the sequence of the template peptide. A higher affinity than that for the peptides is found for the parent proteins RBD and spike protein, which seems to be due to out of cavity effects caused by their larger footprint on the nanofilm surface.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Epítopos/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Péptidos/metabolismo , Aminoácidos
13.
Anal Chem ; 83(20): 7704-11, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21958006

RESUMEN

Molecularly imprinted polymers (MIPs) for nitrofurantoin (NFT) recognition addressing in parallel of two complementary functional groups were created using a noncovalent imprinting approach. Specific tailor-made functional monomers were synthesized: a diaminopyridine derivative as the receptor for the imide residue and three (thio)urea derivatives for the interaction with the nitro group of NFT. A significantly improved binding of NFT to the new MIPs was revealed from the imprinting factor, efficiency of binding, affinity constants and maximum binding number as compared to previously reported MIPs, which addressed either the imide or the nitro residue. Substances possessing only one functionality (either the imide group or nitro group) showed significantly weaker binding to the new imprinted polymers than NFT. However, the compounds lacking both functionalities binds extremely weak to all imprinted polymers. The new imprinted polymers were applied in a flow-through thermistor in organic solvent for the first time. The MIP-thermistor allows the detection of NFT down to a concentration of 5 µM in acetonitrile + 0.2% dimethyl sulfoxide (DMSO). The imprinting factor of 3.91 at 0.1 mM of NFT as obtained by thermistor measurements is well comparable to the value obtained by batch binding experiments.


Asunto(s)
Impresión Molecular , Nitrofurantoína/análisis , Polímeros/química , Temperatura , Acetonitrilos/química , Dimetilsulfóxido/química , Imidas/química , Piridinas/química , Urea/análogos & derivados
14.
J Mol Recognit ; 24(6): 953-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22038802

RESUMEN

Nanoparticles modified with either 6-amino-1-hydroxy-2,1-benzoxaborolane (3-aminobenzoboroxole) or 3-aminophenylboronic acid were prepared by nucleophilic substitution of a styrene-co-DVB-co-vinylbenzylchloride latex (25 nm). Isothermal titration calorimetry (ITC) was used as a label-free detection method for the analysis of the binding between monosaccharides and these two differently derivatized nanoparticle systems at pH 7.4. Because ITC reveals, thermodynamical parameters such as the changes in enthalpy ΔH, free energy ΔG, and entropy ΔS, possible explanations for the higher binding constants can be derived in terms of entropy and enthalpy changes. In case of the modified nanoparticles, the free energy of binding is dominated by the entropy term. This shows that interfacial effects, besides the intrinsic affinity, lead to a higher binding constant compared with the free ligand. The highest binding constant was found for fructose binding to the benzoboroxole modified nanoparticles: Its value of 1150 M(-1) is twice as high as for the free benzoboroxole and five times as high as with phenylboronic acid or 3-aminophenylboronic acid. In contrast to the binding of fructose to free boronic acids, which is an enthalpically driven process, the binding of fructose to the modified nanoparticles is dominated by the positive entropy term.


Asunto(s)
Fructosa/química , Nanopartículas/química , Receptores de Superficie Celular/química , Compuestos de Boro/química , Ácidos Borónicos/química , Calorimetría/métodos , Entropía , Concentración de Iones de Hidrógeno , Látex/química , Ligandos , Unión Proteica , Estirenos/química , Termodinámica
15.
Langmuir ; 26(11): 9088-93, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20180587

RESUMEN

Two new hydrophilic, poly(ethylene glycol) (PEG)-based redox copolymers bearing electrochemically active ferrocene (Fc) and thiol/disulfide anchoring functionalities were synthesized. These copolymers are shown to adsorb on gold surfaces causing polymeric self-assembled monolayers (pSAMs) that possess triple functions: "redox-active", "ionic-tunable", and "bio-inert". Both immobilized polymers showed redox potentials at +400 mV (Ag|AgCl), and facilitate the electrocatalytical oxidation of NADH. Additionally, interfacial architecture of the polymers is affected by an increase in Ca(2+) concentration, which leads to an amplification of the electrochemical response. The electrode current, measured for NADH-oxidation, increased by 80% after addition of 10 mM Ca(2+) ions. Considering the Ca(2+) influence on the heterogeneous electron transfer a structural model of the immobilized polymers is proposed based on the strong chelating ability of noncyclic PEG moieties.


Asunto(s)
Técnicas Biosensibles , Adsorción , Compuestos Ferrosos/química , Metalocenos , Polietilenglicoles/química
16.
Chem Commun (Camb) ; (3): 274-83, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19209302

RESUMEN

The layer-by-layer adsorption technique based on the consecutive deposition of oppositely charged species is suitable for the preparation of protein multilayers with fully electro-active protein molecules. The methodology was established with cytochrome c and the polyelectrolyte sulfonated polyaniline (PASA). The technique is also useful for the construction of bi-protein architectures confining protein-protein communication to an electrode. Following natural examples of protein complexes with defined signal transfer, cytochrome c was arranged with enzymes such as xanthine oxidase, bilirubin oxidase, laccase, and sulfite oxidase in self-assembled multilayer architectures. Thus, biomimetic signal chains from the enzyme substrate via the enzyme and cytochrome c towards the electrode can be established. Communication between proteins immobilised in multiple layers on the electrode can be achieved by in situ generation of small shuttle molecules or more advantageously by direct interprotein electron transfer. This allows the construction of new sensing electrodes, the properties of which can be tuned by the number of deposited protein layers. The mechanism of electron transfer within such protein assemblies on gold electrodes will be discussed.


Asunto(s)
Biomimética/métodos , Proteínas/química , Compuestos de Anilina/química , Citocromos c/química , Electroquímica , Electrodos , Polímeros/química , Ácidos Sulfónicos/química
17.
Methods Mol Biol ; 504: 3-22, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19159087

RESUMEN

Piezoelectric sensors have become a versatile tool in biosensorics to study protein-protein and protein-small molecule interactions. Here we present theoretical background on piezoelectric sensors and instructions, how to modify their surface with various recognition elements for cholinesterases. These recognition elements comprise an organophosphate (paraoxon), a cocaine derivative (BZE-DADOO), and a tricyclic, aromatic compound (propidium). Additionally, a guide to the kinetic evaluation of the obtained binding curves is given in this chapter.


Asunto(s)
Técnicas Biosensibles/instrumentación , Colinesterasas/análisis , Colinesterasas/química , Diseño Asistido por Computadora , Sistemas Microelectromecánicos/instrumentación , Técnicas Biosensibles/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Anal Bioanal Chem ; 393(1): 225-33, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18932024

RESUMEN

An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V (vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 microM sulfite with a sensitivity of 2.19 mA M(-1) sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8% and lost 20% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample.


Asunto(s)
Técnicas Biosensibles , Citocromos c/metabolismo , Electrólitos/metabolismo , Enzimas Inmovilizadas/metabolismo , Sulfito-Oxidasa/metabolismo , Sulfitos/análisis , Compuestos de Anilina/metabolismo , Animales , Catálisis , Electroquímica , Electrodos , Oro/química , Caballos , Humanos , Miocardio/enzimología , Oxidación-Reducción , Ácidos Sulfónicos/química
19.
Polymers (Basel) ; 11(12)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801184

RESUMEN

Molecularly imprinted polymers (MIPs) mimic the binding sites of antibodies by substituting the amino acid-scaffold of proteins by synthetic polymers. In this work, the first MIP for the recognition of the diagnostically relevant enzyme butyrylcholinesterase (BuChE) is presented. The MIP was prepared using electropolymerization of the functional monomer o-phenylenediamine and was deposited as a thin film on a glassy carbon electrode by oxidative potentiodynamic polymerization. Rebinding and removal of the template were detected by cyclic voltammetry using ferricyanide as a redox marker. Furthermore, the enzymatic activity of BuChE rebound to the MIP was measured via the anodic oxidation of thiocholine, the reaction product of butyrylthiocholine. The response was linear between 50 pM and 2 nM concentrations of BuChE with a detection limit of 14.7 pM. In addition to the high sensitivity for BuChE, the sensor responded towards pseudo-irreversible inhibitors in the lower mM range.

20.
Biosens Bioelectron ; 24(1): 111-7, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18468882

RESUMEN

We developed a dual piezoelectric/amperometric sensor for the detection of two unrelated analytes in one experiment that uses propidium to anchor acetylcholinesterases (AChE) at the surface. This mass-sensitive sensor does not only allow the examination of the interaction between AChE and the modified surface but also the detection of in situ inhibition of the surface-bound AChE. Here we describe the application of the propidium-based sensor in combination with a modified AChE. For this reason the cocaine derivative benzoylecgonine (BZE) was coupled via a 10A long hydrophilic linker - 1,8-diamino-3,4-dioxaoctane - to carboxylic groups of the AChE after EDC/NHS activation. Thus the modified AChE (BZE-AChE) possesses an additional recognition element besides the inhibitor binding site. After the deposition of BZE-AChE on the sensor surface the binding of an anti-BZE-antibody to the BZE-AChE can be monitored. This makes it possible to determine two analytes - cocaine and organophosphate - in one experiment by measuring antibody binding and decrease in enzymatic activity, respectively. Furthermore it was also shown that other cocaine-binding enzymes, e.g., butyrylcholinesterase, can bind to the modified BZE-AChE. The competitive immunoassay allowed the detection of cocaine with a dynamic range from 10(-9) to 10(-7)M. The organophosphate chlorpyrifos-oxon could be detected in concentrations from 10(-6) down to 10(-8)M after 20 min of injection time (equals to 500 microL sample volume.


Asunto(s)
Acetilcolinesterasa/química , Técnicas Biosensibles/métodos , Cloropirifos/análogos & derivados , Inhibidores de la Colinesterasa/análisis , Cocaína/análogos & derivados , Cocaína/análisis , Haptenos/inmunología , Inmunoensayo/métodos , Butirilcolinesterasa/química , Cloropirifos/análisis , Cocaína/química , Cocaína/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA