Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834053

RESUMEN

Epilepsy is a highly prevalent neurological disorder, affecting between 5-8 per 1000 individuals and is associated with a lifetime risk of up to 3%. In addition to high incidence, epilepsy is a highly heterogeneous disorder, with variation including, but not limited to the following: severity, age of onset, type of seizure, developmental delay, drug responsiveness, and other comorbidities. Variable phenotypes are reflected in a range of etiologies including genetic, infectious, metabolic, immune, acquired/structural (resulting from, for example, a severe head injury or stroke), or idiopathic. This review will focus specifically on epilepsies with a genetic cause, genetic testing, and biomarkers in epilepsy.


Asunto(s)
Epilepsia , Accidente Cerebrovascular , Humanos , Epilepsia/etiología , Convulsiones/genética , Pruebas Genéticas , Comorbilidad , Accidente Cerebrovascular/genética
2.
Am J Hum Genet ; 102(1): 156-174, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304373

RESUMEN

Pediatric developmental syndromes present with systemic, complex, and often overlapping clinical features that are not infrequently a consequence of Mendelian inheritance of mutations in genes involved in DNA methylation, establishment of histone modifications, and chromatin remodeling (the "epigenetic machinery"). The mechanistic cross-talk between histone modification and DNA methylation suggests that these syndromes might be expected to display specific DNA methylation signatures that are a reflection of those primary errors associated with chromatin dysregulation. Given the interrelated functions of these chromatin regulatory proteins, we sought to identify DNA methylation epi-signatures that could provide syndrome-specific biomarkers to complement standard clinical diagnostics. In the present study, we examined peripheral blood samples from a large cohort of individuals encompassing 14 Mendelian disorders displaying mutations in the genes encoding proteins of the epigenetic machinery. We demonstrated that specific but partially overlapping DNA methylation signatures are associated with many of these conditions. The degree of overlap among these epi-signatures is minimal, further suggesting that, consistent with the initial event, the downstream changes are unique to every syndrome. In addition, by combining these epi-signatures, we have demonstrated that a machine learning tool can be built to concurrently screen for multiple syndromes with high sensitivity and specificity, and we highlight the utility of this tool in solving ambiguous case subjects presenting with variants of unknown significance, along with its ability to generate accurate predictions for subjects presenting with the overlapping clinical and molecular features associated with the disruption of the epigenetic machinery.


Asunto(s)
Metilación de ADN/genética , Genoma Humano , Mutación/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Regiones no Traducidas 5'/genética , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Demografía , Epigénesis Genética , Humanos , Modelos Genéticos , Trastornos del Neurodesarrollo/sangre , Probabilidad , Reproducibilidad de los Resultados , Adulto Joven
3.
Genet Med ; 23(6): 1065-1074, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33547396

RESUMEN

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.


Asunto(s)
Metilación de ADN , Epigenómica , Canadá , Europa (Continente) , Humanos , Síndrome
4.
Biochem Cell Biol ; 95(2): 223-231, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28068143

RESUMEN

It was hypothesized that choline supplementation in insulin resistant (IR) CTP:phosphoethanolamine cytidylyltransferase deficient (Pcyt2+/-) mice would ameliorate muscle function by remodeling glucose and fatty acid (FA) metabolism. Pcyt2+/- mice either received no treatment or were allowed access to 2 mg/mL choline in drinking water for 4 weeks. Skeletal muscle was harvested from choline treated and untreated mice. Lipid analysis and metabolic gene expression and signaling pathways were compared between untreated Pcyt2+/- mice, treated Pcyt2+/- mice, and Pcyt2+/+ mice. The major positive effect of choline supplementation on IR muscle was the reduction of glucose utilization for FA and triglyceride (TAG) synthesis and increased muscle glucose storage as glycogen. Choline reduced the expression of genes for FA and TAG formation (Scd1, Fas, Srebp1c, Dgat1/2), upregulated the genes for FA oxidation (Cpt1, Pparα, Pgc1α), and had minor effects on phospholipid and lipolysis genes. Pcyt2+/- muscle had reduced insulin signaling (IRS1), autophagy (LC3), and choline transport (CTL1) proteins that were restored by choline treatment. Additionally, choline activated AMPK and Akt while inhibiting mTORC1 phosphorylation. These data established that choline supplementation could restore muscle glucose metabolism by reducing lipogenesis and improving mitochondrial and intracellular signaling for protein and energy metabolism in insulin resistant Pcyt2 deficient mice.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Colina/farmacología , Resistencia a la Insulina , Lipogénesis/efectos de los fármacos , ARN Nucleotidiltransferasas/genética , Adaptación Fisiológica/genética , Administración Oral , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Lipogénesis/genética , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Nucleotidiltransferasas/deficiencia , Transducción de Señal , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
5.
Crit Rev Clin Lab Sci ; 53(3): 147-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26758403

RESUMEN

Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Enfermedades Genéticas Congénitas/genética , Animales , Discapacidades del Desarrollo/genética , Genoma , Humanos , Discapacidad Intelectual/genética
7.
FASEB J ; 29(5): 1663-75, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25466896

RESUMEN

Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.


Asunto(s)
Membrana Celular/patología , Deficiencia de Colina/etiología , Colina/farmacología , Fibroblastos/patología , Mitocondrias/patología , Síndrome de Taquicardia Postural Ortostática/complicaciones , Piel/patología , Transporte Biológico , Western Blotting , Estudios de Casos y Controles , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , Síndrome de Taquicardia Postural Ortostática/fisiopatología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/metabolismo
8.
Adv Hematol ; 2024: 3056216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375212

RESUMEN

Background: Thrombocytosis is a common reason for referral to Hematology. Differentiating between secondary causes of thrombocytosis and essential thrombocythemia (ET) is often clinically challenging. A practical diagnostic approach to identify secondary thrombocytosis could reduce overinvestigation such as next generation sequencing (NGS) panel. Methods and Results: All adult patients with thrombocytosis (≥450 × 109/L) who underwent molecular testing at a single tertiary care centre between January 1, 2018 and May 31, 2021 were evaluated. Clinical and laboratory variables were compared between patients with secondary thrombocytosis vs. ET. Clinical variables included smoking, thrombosis, splenectomy, active malignancy, chronic inflammatory disease, and iron deficiency anemia. Laboratory variables included complete blood count (CBC), ferritin, and myeloid mutations detected by NGS. The overall yield of molecular testing was 52.4%; 92.1% of which were mutations in JAK2, CALR, and/or MPL. Clinical factors predictive of ET included history of arterial thrombosis (p < 0.05); active malignancy, chronic inflammatory disease, splenectomy, and iron deficiency were associated with secondary thrombocytosis (p < 0.05). A diagnosis of ET was associated with higher hemoglobin, mean corpuscular volume (MCV), red cell distribution width (RDW), and mean platelet volume (MPV), while secondary thrombocytosis was associated with higher body mass index, white blood cells, and neutrophils (p < 0.01). Conclusion: A practical approach to investigating patients with persistent thrombocytosis based on clinical characteristics such as active malignancy, chronic inflammatory disease, splenectomy, and iron deficiency may assist in accurately identifying patients more likely to have secondary causes of thrombocytosis and reduce overinvestigation, particularly costly molecular testing.

9.
Curr Oncol ; 31(4): 1762-1773, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38668037

RESUMEN

Myelodysplastic neoplasms (MDS) with ring sideroblasts (RS) are diagnosed via bone marrow aspiration in the presence of either (i) ≥15% RS or (ii) 5-14% RS and an SF3B1 mutation. In the MEDALIST trial and in an interim analysis of the COMMANDS trial, lower-risk MDS-RS patients had decreased transfusion dependency with luspatercept treatment. A total of 6817 patients with suspected hematologic malignancies underwent molecular testing using a next-generation-sequencing-based genetic assay and 395 MDS patients, seen at our centre from 1 January 2018 to 31 May 2023, were reviewed. Of these, we identified 39 evaluable patients as having lower-risk MDS with SF3B1 mutations: there were 20 (51.3%) males and 19 (48.7%) females, with a median age of 77 years (range of 57 to 92). Nineteen (48.7%) patients had an isolated SF3B1 mutation with a mean variant allele frequency of 35.2% +/- 8.1%, ranging from 7.4% to 46.0%. There were 29 (74.4%) patients with ≥15% RS, 6 (15.4%) with 5 to 14% RS, one (2.6%) with 1% RS, and 3 (7.7%) with no RS. Our study suggests that a quarter of patients would be missed based on the morphologic criterion of only using RS greater than 15% and supports the revised 2022 definitions of the World Health Organization (WHO) and International Consensus Classification (ICC), which shift toward molecularly defined subtypes of MDS and appropriate testing.


Asunto(s)
Mutación , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Organización Mundial de la Salud , Humanos , Factores de Empalme de ARN/genética , Masculino , Femenino , Anciano , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/clasificación , Persona de Mediana Edad , Estudios Retrospectivos , Anciano de 80 o más Años , Fosfoproteínas/genética , Anemia Sideroblástica/genética
10.
Expert Rev Mol Diagn ; 23(9): 827-841, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37542410

RESUMEN

BACKGROUND: Comprehensive molecular diagnostics are highly dependent on the technical performance of next-generation sequencing (NGS) pipelines, which are assessed by data quality, cost, turnaround time, and accuracy of detecting a range of sequence and copy number variants. METHODS: A dataset of 285 clinically validated cases (205 retrospective and 80 prospective), carrying complex sequence and copy number variants and thousands of genetic polymorphisms underwent a clinical validation of the KAPA HyperChoice target enrichment system with parallel sample fidelity assessment across a number of NGS panels. The analysis included assessment of peripheral blood, urine, muscle and FFPE tissues. RESULTS: High-quality and exceptionally uniform data with 100% coverage of all targeted panels were obtained, resulting in complete sensitivity and specificity for all variant types across nearly all panels and tissue types. Overall reduction in cost and turnaround times was obtained with the implementation of a parallel genotyping sample fidelity system. CONCLUSION: Results of the laboratory quality improvement study focused on a single NGS pipeline that includes both nuclear and mitochondrial genomes demonstrated utility in the clinical setting to assess a range of referral reasons, necessary due to the complex molecular etiology of human genetic disorders, while reducing costs and turnaround times.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células Germinativas
11.
J Mol Med (Berl) ; 101(8): 1029-1040, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37466676

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Complement and coagulation gene variants have been associated with aHUS susceptibility. We assessed the diagnostic yield of a next-generation sequencing (NGS) panel in a large cohort of Canadian patients with suspected aHUS. Molecular testing was performed on peripheral blood DNA samples from 167 patients, collected between May 2019 and December 2021, using a clinically validated NGS pipeline. Coding exons with 20 base pairs of flanking intronic regions for 21 aHUS-associated or candidate genes were enriched using a custom hybridization protocol. All sequence and copy number variants were assessed and classified following American College of Medical Genetics guidelines. Molecular diagnostic results were reported for four variants in three individuals (1.8%). Twenty-seven variants of unknown significance were identified in 25 (15%) patients, and 34 unique variants in candidate genes were identified in 28 individuals. An illustrative patient case describing two genetic alterations in complement genes is presented, highlighting that variable expressivity and incomplete penetrance must be considered when interpreting genetic data in patients with complement-mediated disease, alongside the potential additive effects of genetic variants on aHUS pathophysiology. In this cohort of patients with suspected aHUS, using clinical pipelines for genetic testing and variant classification, pathogenic/likely pathogenic variants occurred in a very small percentage of patients. Our results highlight the ongoing challenges in variant classification following NGS panel testing in patients with suspected aHUS, alongside the need for clear testing guidance in the clinical setting. KEY MESSAGES: • Clinical molecular testing for disease associated genes in aHUS is challenging. • Challenges include patient selection criteria, test validation, and interpretation. • Most variants were of uncertain significance (31.7% of patients; VUS + candidates). • Their clinical significance may be elucidated as more evidence becomes available.  • Low molecular diagnostic rate (1.8%), perhaps due to strict classification criteria. • Case study identified two likely pathogenic variants; one each in MCP/CD46 and CFI.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Genotipo , Mutación , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Selección de Paciente , Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/genética , Estudios de Cohortes , Reproducibilidad de los Resultados , Incertidumbre
12.
Curr Oncol ; 30(10): 9039-9048, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37887553

RESUMEN

We present a fascinating case of a 57-year-old male with a novel mutation in MLH1 (MLH1:c.1288G > T, p.(Glu430*)), who presented with two synchronous colonic tumours, initially deemed unresectable, and experienced a complete pathological response on neoadjuvant pembrolizumab. Extensive genetic testing revealed post-zygotic mosaicism from the novel mutation.


Asunto(s)
Neoplasias del Colon , Mosaicismo , Terapia Neoadyuvante , Humanos , Masculino , Persona de Mediana Edad , Inestabilidad de Microsatélites , Mutación , Homólogo 1 de la Proteína MutL/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética
13.
Genes (Basel) ; 13(11)2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36360312

RESUMEN

Molecular biomarkers, such as IDH1/IDH2 mutations and 1p19q co-deletion, are included in the histopathological and clinical criteria currently used to diagnose and classify gliomas. IDH1/IDH2 mutation is a common feature of gliomas and is associated with a glioma-CpG island methylator phenotype (CIMP). Aberrant genomic methylation patterns can also be used to extrapolate information about copy number variation in a tumor. This project's goal was to assess the feasibility of DNA methylation array for the simultaneous detection of glioma biomarkers as a more effective testing strategy compared to existing single analyte tests. METHODS: Whole-genome methylation array (WGMA) testing was performed using 48 glioma DNA samples to detect methylation aberrations and chromosomal gains and losses. The analyzed samples include 39 tumors in the discovery cohort and 9 tumors in the replication cohort. Methylation profiles for each sample were correlated with IDH1 p.R132G mutation, immunohistochemistry (IHC), and previous 1p19q clinical testing to assess the sensitivity and specificity of the WGMA assay for the detection of these variants. RESULTS: We developed a DNA methylation signature to specifically distinguish a IDH1/IDH2 mutant tumor from normal samples. This signature is composed of 11 CpG sites that were significantly hypermethylated in the IDH1/IDH2 mutant group. Copy number analysis using WGMA data was able to identify five of five positive samples for 1p19q co-deletion and was concordant for all negative samples. CONCLUSIONS: The DNA methylation signature presented here has the potential to refine the utility of WGMA to predict IDH1/IDH2 mutation status of gliomas, thus improving diagnostic yield and efficiency of laboratory testing compared to single analyte IDH1/IDH2 or 1p19q tests.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Metilación de ADN/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Variaciones en el Número de Copia de ADN/genética , Mutación , Glioma/diagnóstico , Glioma/genética , Glioma/patología
14.
Mol Diagn Ther ; 26(3): 333-343, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35381971

RESUMEN

BACKGROUND: The use of molecular genetic biomarkers is rapidly advancing to aid diagnosis, prognosis, and clinical management of hematological disorders. We have implemented a next-generation sequencing (NGS) assay for detection of genetic variants and fusions as a frontline test for patients suspected with myeloid malignancy. In this study, we summarize the findings and assess the clinical impact in the first 1613 patients tested. METHODS: All patients were assessed using NGS based Oncomine Myeloid Research Assay (ThermoFisher) including 40 genes (17 full genes and 23 genes with clinically relevant "hotspot" regions), along with a panel of 29 fusion driver genes (including over fusion 600 partners). RESULTS: Among 1613 patients with suspected myeloid malignancy, 43% patients harbored at least one clinically relevant variant: 91% (90/100) in acute myeloid leukemia patients, 71.7% (160/223) in myelodysplastic syndrome (MDS), 77.5% (308/397) in myeloproliferative neoplasm (MPN), 83% (34/41) in MPN/MDS, and 100% (40/40) in chronic myeloid leukemia patients. Comparison of NGS and cytogenetics results revealed a high degree of concordance in gene fusion detection. CONCLUSIONS: Our findings demonstrate clinical utility and feasibility of integrating a NGS-based gene mutation and fusion testing assay as a frontline diagnostic test in a large reported cohort of patients with suspected myeloid malignancy, in a clinical laboratory setting. Overlap with cytogenetic test results provides opportunity for testing reduction and streamlining.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , ADN , Fusión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética , ARN
15.
Front Genet ; 12: 698595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326862

RESUMEN

BACKGROUND: Hereditary cancer predisposition syndromes account for approximately 10% of cancer cases. Next generation sequencing (NGS) based multi-gene targeted panels is now a frontline approach to identify pathogenic mutations in cancer predisposition genes in high-risk families. Recent evolvement of NGS technologies have allowed simultaneous detection of sequence and copy number variants (CNVs) using a single platform. In this study, we have analyzed frequency and nature of sequence variants and CNVs, in a Canadian cohort of patients, suspected with hereditary cancer syndrome, referred for genetic testing following specific genetic testing guidelines based on patient's personal and/or family history of cancer. METHODS: A 2870 patients were subjected to a single NGS based multi-gene targeted hereditary cancer panel testing algorithm to identify sequence variants and CNVs in cancer predisposition genes at our reference laboratory in Southwestern Ontario. CNVs identified by NGS were confirmed by alternative techniques like Multiplex ligation-dependent probe amplification (MLPA). RESULTS: A 15% (431/2870) patients had a pathogenic variant and 36% (1032/2870) had a variant of unknown significance (VUS), in a cancer susceptibility gene. A total of 287 unique pathogenic variant were identified, out of which 23 (8%) were novel. CNVs identified by NGS based approach accounted for 9.5% (27/287) of pathogenic variants, confirmed by alternate techniques with high accuracy. CONCLUSION: This study emphasizes the utility of NGS based targeted testing approach to identify both sequence and CNVs in patients suspected with hereditary cancer syndromes in clinical setting and expands the mutational spectrum of high and moderate penetrance cancer predisposition genes.

16.
Neurosci Lett ; 451(1): 79-82, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19103261

RESUMEN

A polymorphism in the serotonin transporter gene (5-HTTLPR) is being extensively studied for association with suicidal behavior. A new allelic variant within the 5-HTTLPR polymorphism was described but it has not been thoroughly analyzed in the recent literature. The SNP functional analysis demonstrated that the A variant of the L allele (L(A)) produces high levels of mRNA and that the G variant (L(G)) is equivalent to the S allele. Our aims were to compare the frequency of 5-HTTLPR alleles in 94 depressed patients who attempted suicide compared to 94 controls free of psychiatric disorder, including the embedded SNP rs25531. Using the biallelic classification, our sample contained 62 (33%) LL, 76 (40.4%) LS, and 50 (26.6%) SS individuals. Using the functional classification system, our sample contained 43 (22.5%) L'L', 84 (44.7%) L'S', and 61 (32.4%) S'S' individuals, with no significant differences between cases and controls in genotypic tests in either biallelic (chi(2)=2.543; df=2; p=0.280) and functional models (chi(2)=2.995; df=2; p=0.228). The minor allele frequency (MAF) - the S allele - did not show any distributional difference between cases and controls using biallelic classification system 0.51 vs. 0.43, (OR=1.41; CI95% 0.94 to 2.12; p=0.121). Also the S' allele of the functional classification system did not show any distributional difference between the two groups 0.59. vs. 0.51 (OR=1.35; CI95% 0.90 to 2.03; p=0.178). This study provided the possibility of a re-analysis of novell 5-HTTLPR functional variants identified within L allele that alters its mRNA production and thus changes its functionality. We could not find any association between both biallelic and functional 5-HTTLPR in depressed patients with suicide attempt, being the small sample size an important limitation for these results. In conclusion, we can suggest that despite the several studies in this issue, the exact effect and role of 5-HTTLPR in genetics of suicide is still unclear and should be better investigated for future studies.


Asunto(s)
Trastorno Depresivo/genética , Trastorno Depresivo/metabolismo , Predisposición Genética a la Enfermedad/genética , Polimorfismo Genético/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Intento de Suicidio/psicología , Adulto , Encéfalo/metabolismo , Encéfalo/fisiopatología , Química Encefálica/genética , Estudios de Casos y Controles , Análisis Mutacional de ADN , Trastorno Depresivo/fisiopatología , Femenino , Frecuencia de los Genes/genética , Pruebas Genéticas , Variación Genética/genética , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Serotonina/metabolismo
18.
Front Oncol ; 8: 100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740534

RESUMEN

INTRODUCTION: The current methodology involving diagnosis of prostate cancer (PCa) relies on the pathology examination of prostate needle biopsies, a method with high false negative rates partly due to temporospatial, molecular, and morphological heterogeneity of prostate adenocarcinoma. It is postulated that molecular markers have a potential to assign diagnosis to a considerable portion of undetected prostate tumors. This study examines the genome-wide DNA methylation changes in PCa in search of genomic markers for the development of a diagnostic algorithm for PCa screening. METHODS: Archival PCa and normal tissues were assessed using genomic DNA methylation arrays. Differentially methylated sites and regions (DMRs) were used for functional assessment, gene-set enrichment and protein interaction analyses, and examination of transcription factor-binding patterns. Raw signal intensity data were used for identification of recurrent copy number variations (CNVs). Non-redundant fully differentiating cytosine-phosphate-guanine sites (CpGs), which did not overlap CNV segments, were used in an L1 regularized logistic regression model (LASSO) to train a classification algorithm. Validation of this algorithm was performed using a large external cohort of benign and tumor prostate arrays. RESULTS: Approximately 6,000 probes and 600 genomic regions showed significant DNA methylation changes, primarily involving hypermethylation. Gene-set enrichment and protein interaction analyses found an overrepresentation of genes related to cell communications, neurogenesis, and proliferation. Motif enrichment analysis demonstrated enrichment of tumor suppressor-binding sites nearby DMRs. Several of these regions were also found to contain copy number amplifications. Using four non-redundant fully differentiating CpGs, we trained a classification model with 100% accuracy in discriminating tumors from benign samples. Validation of this algorithm using an external cohort of 234 tumors and 92 benign samples yielded 96% sensitivity and 98% specificity. The model was found to be highly sensitive to detect metastatic lesions in bone, lymph node, and soft tissue, while being specific enough to differentiate the benign hyperplasia of prostate from tumor. CONCLUSION: A considerable component of PCa DNA methylation profile represent driver events potentially established/maintained by disruption of tumor suppressor activity. As few as four CpGs from this profile can be used for screening of PCa.

19.
Clin Epigenetics ; 10: 21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29456765

RESUMEN

Background: Claes-Jensen syndrome is an X-linked inherited intellectual disability caused by mutations in the KDM5C gene. Kdm5c is a histone lysine demethylase involved in histone modifications and chromatin remodeling. Males with hemizygous mutations in KDM5C present with intellectual disability and facial dysmorphism, while most heterozygous female carriers are asymptomatic. We hypothesized that loss of Kdm5c function may influence other components of the epigenomic machinery including DNA methylation in affected patients. Results: Genome-wide DNA methylation analysis of 7 male patients affected with Claes-Jensen syndrome and 56 age- and sex-matched controls identified a specific DNA methylation defect (epi-signature) in the peripheral blood of these patients, including 1769 individual CpGs and 9 genomic regions. Six healthy female carriers showed less pronounced but distinctive changes in the same regions enabling their differentiation from both patients and controls. Highly specific computational model using the most significant methylation changes demonstrated 100% accuracy in differentiating patients, carriers, and controls in the training cohort, which was confirmed on a separate cohort of patients and carriers. The 100% specificity of this unique epi-signature was further confirmed on additional 500 unaffected controls and 600 patients with intellectual disability and developmental delay, including other patient cohorts with previously described epi-signatures. Conclusion: Peripheral blood epi-signature in Claes-Jensen syndrome can be used for molecular diagnosis and carrier identification and assist with interpretation of genetic variants of unknown clinical significance in the KDM5C gene.


Asunto(s)
Metilación de ADN , ADN/sangre , Demencia/diagnóstico , Epigenómica/métodos , Pérdida Auditiva Central/diagnóstico , Histona Demetilasas/genética , Atrofia Óptica/diagnóstico , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Niño , Preescolar , Biología Computacional , Demencia/sangre , Demencia/genética , Femenino , Pruebas Genéticas/métodos , Pérdida Auditiva Central/sangre , Pérdida Auditiva Central/genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , Atrofia Óptica/sangre , Atrofia Óptica/genética , Sensibilidad y Especificidad , Adulto Joven
20.
Nat Commun ; 9(1): 4885, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459321

RESUMEN

Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening.


Asunto(s)
Anomalías Múltiples/genética , Proteínas Cromosómicas no Histona/genética , Metilación de ADN , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Ensamble y Desensamble de Cromatina , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Epigenómica , Cara/anomalías , Facies , Deformidades Congénitas del Pie/diagnóstico , Deformidades Congénitas del Pie/genética , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Humanos , Hipotricosis/diagnóstico , Hipotricosis/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Mutación , Cuello/anomalías , Proteínas Nucleares/genética , Proteína SMARCB1/genética , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA