Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(24): 16258-65, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27250665

RESUMEN

Heterojunction solar cells based on colloidal nanocrystals (NCs) have shown remarkable improvements in performance in the last decade, but this progress is limited to merely two materials, PbS and PbSe. However, solar cells based on other material systems such as copper-based compounds show lower power conversion efficiencies and much less effort has been made to develop a better understanding of factors limiting their performance. Here, we study charge carrier loss mechanisms in solution-processed CuInS2/ZnO NC solar cells by combining steady-state measurements with transient photocurrent and photovoltage measurements. We demonstrate the presence of an extraction barrier at the CuInS2/ZnO interface, which can be reduced upon illumination with UV light. However, trap-assisted recombination in the CuInS2 layer is shown to be the dominant decay process in these devices.

2.
Phys Chem Chem Phys ; 16(24): 12251-60, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24820059

RESUMEN

We present a significant efficiency enhancement of hybrid bulk heterojunction solar cells by utilizing CdSe quantum dots attached to reduced graphene oxide (rGO) as the electron accepting phase, blended with the PCPDTBT polymer. The quantum dot attachment to rGO was achieved following a self-assembly approach, recently developed, using thiolated reduced graphene oxide (TrGO) to form a TrGO-CdSe nanocomposite. Therefore, we are able to obtain TrGO-CdSe quantum dot/PCPDTBT bulk-heterojunction hybrid solar cells with power conversion efficiencies of up to 4.2%, compared with up to 3% for CdSe quantum dot/PCPDTBT devices. The improvement is mainly due to an increase of the open-circuit voltage from 0.55 V to 0.72 V. We found evidence for a significant change in the heterojunction donor-acceptor blend nanomorphology, observable by a more vertical alignment of the TrGO-quantum dot nanocomposites in the z-direction and a different nanophase separation in the x-y direction compared to the quantum dot only containing device. Moreover, an improved charge extraction and trap state reduction were observed for TrGO containing hybrid solar cells.

3.
Adv Mater ; 36(13): e2311303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38118058

RESUMEN

The possibility to control the charge carrier density through doping is one of the defining properties of semiconductors. For organic semiconductors, the doping process is known to come with several problems associated with the dopant compromising the charge carrier mobility by deteriorating the host morphology and/or introducing Coulomb traps. While for inorganic semiconductors these factors can be mitigated through (top-down) modulation doping, this concept has not been employed in organics. Here, this work shows that properly chosen host/dopant combinations can give rise to spontaneous, bottom-up modulation doping, in which the dopants preferentially sit in an amorphous phase, while the actual charge transport occurs predominantly in a crystalline phase with an unaltered microstructure, spatially separating dopants and mobile charges. Combining experiments and numerical simulations, this work shows that this leads to exceptionally high conductivities at relatively low dopant concentrations.

4.
Macromolecules ; 53(15): 6314-6321, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32913375

RESUMEN

We report a record thermoelectric power factor of up to 160 µW m-1 K-2 for the conjugated polymer poly(3-hexylthiophene) (P3HT). This result is achieved through the combination of high-temperature rubbing of thin films together with the use of a large molybdenum dithiolene p-dopant with a high electron affinity. Comparison of the UV-vis-NIR spectra of the chemically doped samples to electrochemically oxidized material reveals an oxidation level of 10%, i.e., one polaron for every 10 repeat units. The high power factor arises due to an increase in the charge-carrier mobility and hence electrical conductivity along the rubbing direction. We conclude that P3HT, with its facile synthesis and outstanding processability, should not be ruled out as a potential thermoelectric material.

5.
J Mater Chem C Mater ; 7(4): 943-952, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30774956

RESUMEN

Bulk heterojunction solar cells based on conjugated polymer donors and fullerene-derivative acceptors have received much attention in the last decade. Alternative acceptors like organic non-fullerene acceptors or inorganic nanocrystals have been investigated to a lesser extent; however, they also show great potential. In this study, one focus is set on the investigation of the in situ growth of copper indium sulfide nanocrystals in a conjugated polymer matrix. This preparation method allows the fabrication of a hybrid active layer without long-chain ligands, which could hinder charge separation and transport. In contrast, surfactants for the passivation of the nanocrystal surface are missing. To tackle this problem, we modified the absorber layer with 1,3-benzenedithiol and investigated the influence on charge transfer and solar cell performance. Using ToF-SIMS measurements, we could show that 1,3-benzenedithiol is successfully incorporated and homogeneously distributed in the absorber layer, which significantly increases the power conversion efficiency of the corresponding solar cells. This can be correlated to an improved charge transfer between the nanocrystals and the conjugated polymer as revealed by transient absorption spectroscopy as well as prolonged carrier lifetimes as disclosed by transient photovoltage measurements.

6.
ACS Appl Mater Interfaces ; 7(1): 287-300, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25495167

RESUMEN

With the use of two transparent electrodes, organic polymer-fullerene solar cells are semitransparent and may be combined to parallel-connected multijunction devices or used for innovative applications like power-generating windows. A challenging issue is the optimization of the electrodes, to combine high transparency with adequate electric properties. In the present work, we study the potential of sputter-deposited aluminum-doped zinc oxide as an alternative to the widely used but relatively expensive indium tin oxide (ITO) as cathode material in semitransparent polymer-fullerene solar cells. Concerning the anode, we utilized an insulator-metal-insulator structure based on ultrathin Au films embedded between two evaporated MoO3 layers, with the outer MoO3 film (capping layer) serving as a light coupling layer. The performance of the ITO-free semitransparent polymer-fullerene solar cells was systematically studied as dependent on the thickness of the capping layer and the active layer as well as the illumination direction. These variations were found to have strong impact on the obtained photocurrent densities. We performed optical simulations of the electric field distribution within the devices using the transfer-matrix method, to analyze the origin of the current density variations in detail and provide deep insight into the device physics. With the conventional absorber materials studied here, optimized ITO-free and semitransparent devices reached 2.0% power conversion efficiency and a maximum optical transmission of 60%, with the device concept being potentially transferable to other absorber materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA