Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nature ; 601(7891): 144-149, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949858

RESUMEN

The 10-23 DNAzyme is one of the most prominent catalytically active DNA sequences1,2. Its ability to cleave a wide range of RNA targets with high selectivity entails a substantial therapeutic and biotechnological potential2. However, the high expectations have not yet been met, a fact that coincides with the lack of high-resolution and time-resolved information about its mode of action3. Here we provide high-resolution NMR characterization of all apparent states of the prototypic 10-23 DNAzyme and present a comprehensive survey of the kinetics and dynamics of its catalytic function. The determined structure and identified metal-ion-binding sites of the precatalytic DNAzyme-RNA complex reveal that the basis of the DNA-mediated catalysis is an interplay among three factors: an unexpected, yet exciting molecular architecture; distinct conformational plasticity; and dynamic modulation by metal ions. We further identify previously hidden rate-limiting transient intermediate states in the DNA-mediated catalytic process via real-time NMR measurements. Using a rationally selected single-atom replacement, we could considerably enhance the performance of the DNAzyme, demonstrating that the acquired knowledge of the molecular structure, its plasticity and the occurrence of long-lived intermediate states constitutes a valuable starting point for the rational design of next-generation DNAzymes.


Asunto(s)
Biocatálisis , ADN Catalítico/química , ADN Catalítico/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ARN/metabolismo , Cinética , Metales/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Factores de Tiempo
2.
Chemistry ; 30(12): e202303635, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38055217

RESUMEN

Covalently-linked chromophore-radical systems with their unique optical and magnetic properties are useful for applications in, e. g., quantum information science. To expand the catalog of molecular systems, we synthesized and characterized six novel chromophore-radical and radical-chromophore-radical systems employing derivatives of perylene diimide (PDI) as the chromophore and trityl as the radical. The EPR properties of these compounds were evaluated in solution at cryogenic and room temperatures. In addition, the electron spin-spin coupling in the two bistrityl systems was investigated using DQC measurements. The presented results serve as a basis for further spectroscopic investigations under photoexcitation of the PDI core.

3.
Magn Reson Chem ; 62(1): 37-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38130168

RESUMEN

Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS), encompassing techniques such as pulsed electron-electron double resonance (PELDOR or DEER) and relaxation-induced dipolar modulation enhancement (RIDME), is a valuable method in structural biology and materials science for obtaining nanometer-scale distance distributions between electron spin centers. An important aspect of PDS is the extraction of distance distributions from the measured time traces. Most software used for this PDS data analysis relies on simplifying assumptions, such as assuming isotropic g-factors of ~2 and neglecting orientation selectivity and exchange coupling. Here, the program PDSFit is introduced, which enables the analysis of PELDOR and RIDME time traces with or without orientation selectivity. It can be applied to spin systems consisting of up to two spin centers with anisotropic g-factors and to spin systems with exchange coupling. It employs a model-based fitting of the time traces using parametrized distance and angular distributions, and parametrized PDS background functions. The fitting procedure is followed by an error analysis for the optimized parameters of the distributions and backgrounds. Using five different experimental data sets published previously, the performance of PDSFit is tested and found to provide reliable solutions.

4.
Angew Chem Int Ed Engl ; : e202403292, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735849

RESUMEN

We report an iron-catalyzed decarboxylative C(sp3)-O bond-forming reaction under mild, base-free conditions with visible light irradiation. The transformation uses readily available and structurally diverse carboxylic acids, iron photocatalyst, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) derivatives as oxygenation reagents. The process exhibits a broad scope in acids possessing a wide range of stereoelectronic properties and functional groups. The developed reaction was applied to late-stage oxygenation of a series of bio-active molecules. The reaction leverages the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids by photoinduced carboxylate-to-iron charge transfer. Kinetic, electrochemical, EPR, UV/Vis, HRMS, and DFT studies revealed that TEMPO has a triple role in the reaction: as an oxygenation reagent, an oxidant to turn over the Fe-catalyst, and an internal base for the carboxylic acid deprotonation. The obtained TEMPO adducts represent versatile synthetic intermediates that were further engaged in C-C and C-heteroatom bond-forming reactions using commercial organo-photocatalysts and nucleophilic reagents.

5.
Chemistry ; 29(14): e202203148, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36519664

RESUMEN

Tetrathiatriarylmethyl radicals (TAM or trityl) are receiving increasing attention in various fields of magnetic resonance such as imaging, dynamic nuclear polarization, spin labeling, and, more recently, molecular magnetism and quantum information technology. Here, a trityl radical attached via a phenyl bridge to a copper(II)tetraphenylporphyrin was synthesized, and its magnetic properties studied by multi-frequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy and magnetic measurements. EPR revealed that the electron spin-spin coupling constant J between the trityl and Cu2+ spin centers is ferromagnetic with a magnitude of -2.3 GHz (-0.077 cm-1 , + J S → 1 S → 2 ${+J{\vec{S}}_{1}{\vec{S}}_{2}}$ convention) and a distribution width of 1.2 GHz (0.040 cm-1 ). With the help of density functional theory (DFT) calculations, the obtained ferromagnetic exchange coupling, which is unusual for para-substituted phenyl-bridged biradicals, could be related to the almost perpendicular orientation of the phenyl linker with respect to the porphyrin and trityl ring planes in the energy minimum, while the J distribution was rationalized by the temperature weighted rotation of the phenyl bridge about the molecular axis connecting both spin centers. This study exemplifies the importance of molecular dynamics for the homogeneity (or heterogeneity) of the magnetic properties of trityl-based systems.

6.
Chemistry ; 29(72): e202302541, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37755452

RESUMEN

Pulsed dipolar EPR spectroscopy (PDS) in combination with site-directed spin labeling is a powerful tool in structural biology. However, the commonly used spin labels are conjugated to biomolecules via rather long and flexible linkers, which hampers the translation of distance distributions into biomolecular conformations. In contrast, the spin label copper(II)-nitrilotriacetic acid [Cu2+ (NTA)] bound to two histidines (dHis) is rigid and yields narrow distance distributions, which can be more easily translated into biomolecular conformations. Here, we use this label on the 71 kDa Yersinia outer protein O (YopO) to decipher whether a previously experimentally observed bimodal distance distribution is due to two conformations of the biomolecule or of the flexible spin labels. Two different PDS experiments, that is, pulsed electron-electron double resonance (PELDOR aka DEER) and relaxation-induced dipolar modulation enhancement (RIDME), yield unimodal distance distribution with the dHis-Cu2+ (NTA) motif; this result suggests that the α-helical backbone of YopO adopts a single conformation in frozen solution. In addition, we show that the Cu2+ (NTA) label preferentially binds to the target double histidine (dHis) sites even in the presence of 22 competing native histidine residues. Our results therefore suggest that the generation of a His-null background is not required for this spin labeling methodology. Together these results highlight the value of the dHis-Cu2+ (NTA) motif in PDS experiments.


Asunto(s)
Cobre , Histidina , Espectroscopía de Resonancia por Spin del Electrón/métodos , Cobre/química , Proteínas/química , Marcadores de Spin
7.
Nucleic Acids Res ; 48(18): 10518-10526, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32857846

RESUMEN

Riboswitches regulate genes by adopting different structures in responds to metabolite binding. The guanidine-II riboswitch is the smallest representative of the ykkC class with the mechanism of its function being centred on the idea that its two stem loops P1 and P2 form a kissing hairpin interaction upon binding of guanidinium (Gdm+). This mechanism is based on in-line probing experiments with the full-length riboswitch and crystal structures of the truncated stem loops P1 and P2. However, the crystal structures reveal only the formation of the homodimers P1 | P1 and P2 | P2 but not of the proposed heterodimer P1 | P2. Here, site-directed spin labeling (SDSL) in combination with Pulsed Electron-Electron Double Resonance (PELDOR or DEER) is used to study their structures in solution and how they change upon binding of Gdm+. It is found that both hairpins adopt different structures in solution and that binding of Gdm+ does indeed lead to the formation of the heterodimer but alongside the homodimers in a statistical 1:2:1 fashion. These results do thus support the proposed switching mechanism.


Asunto(s)
Guanidina/química , Metaboloma/genética , Conformación de Ácido Nucleico , Riboswitch/genética , Simulación por Computador , Cristalografía por Rayos X , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/ultraestructura , Guanidina/metabolismo , Enlace de Hidrógeno , Secuencias Invertidas Repetidas/genética , Ligandos , Unión Proteica/genética , Riboswitch/efectos de los fármacos , Marcadores de Spin
8.
J Am Chem Soc ; 143(18): 6981-6989, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33905249

RESUMEN

The function of proteins is linked to their conformations that can be resolved with several high-resolution methods. However, only a few methods can provide the temporal order of intermediates and conformational changes, with each having its limitations. Here, we combine pulsed electron-electron double resonance spectroscopy with a microsecond freeze-hyperquenching setup to achieve spatiotemporal resolution in the angstrom range and lower microsecond time scale. We show that the conformational change of the Cα-helix in the cyclic nucleotide-binding domain of the Mesorhizobium loti potassium channel occurs within about 150 µs and can be resolved with angstrom precision. Thus, this approach holds great promise for obtaining 4D landscapes of conformational changes in biomolecules.


Asunto(s)
Electrones , Congelación , Mesorhizobium/química , Canales de Potasio/metabolismo , Modelos Moleculares , Canales de Potasio/química , Conformación Proteica , Análisis Espectral , Factores de Tiempo
9.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34664948

RESUMEN

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Asunto(s)
Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón/normas , Proteínas/química , Marcadores de Spin , Benchmarking , Espectroscopía de Resonancia por Spin del Electrón/métodos , Reproducibilidad de los Resultados
10.
EMBO J ; 36(20): 3062-3079, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28864543

RESUMEN

Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self-immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward-occluded and a new nucleotide-bound state, high-energy outward-occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross-linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi-drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic-level build-up.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas
11.
Chemistry ; 27(16): 5292-5297, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33404074

RESUMEN

The combination of pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) with site-directed spin labelling is a powerful tool in structural biology. Rational design of trityl-based spin labels has enabled studying biomolecular structures at room temperature and within cells. However, most current trityl spin labels suffer either from aggregation with proteins due to their hydrophobicity, or from bioconjugation groups not suitable for in-cell measurements. Therefore, we introduce here the highly hydrophilic trityl spin label Ox-SLIM. Engineered as a short-linked maleimide, it combines the most recent developments in one single molecule, as it does not aggregate with proteins, exhibits high resistance under in-cell conditions, provides a short linker, and allows for selective and efficient spin labelling via cysteines. Beyond establishing synthetic access to Ox-SLIM, its suitability as a spin label is illustrated and ultimately, highly sensitive PDS measurements are presented down to protein concentrations as low as 45 nm resolving interspin distances of up to 5.5 nm.

12.
Chemistry ; 27(8): 2683-2691, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32681763

RESUMEN

Photogenerated multi-spin systems hold great promise for a range of technological applications in various fields, including molecular spintronics and artificial photosynthesis. However, the further development of these applications, via targeted design of materials with specific magnetic properties, currently still suffers from a lack of understanding of the factors influencing the underlying excited state dynamics and mechanisms on a molecular level. In particular, systematic studies, making use of different techniques to obtain complementary information, are largely missing. This work investigates the photophysics and magnetic properties of a series of three covalently-linked porphyrin-trityl compounds, bridged by a phenyl spacer. By combining the results from femtosecond transient absorption and electron paramagnetic resonance spectroscopies, we determine the efficiencies of the competing excited state reaction pathways and characterise the magnetic properties of the individual spin states, formed by the interaction between the chromophore triplet and the stable radical. The differences observed for the three investigated compounds are rationalised in the context of available theoretical models and the implications of the results of this study for the design of a molecular system with an improved intersystem crossing efficiency are discussed.

13.
Phys Chem Chem Phys ; 23(2): 1639-1648, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33411878

RESUMEN

In this work, using the example of model compounds, we studied the reactions resulting from the interaction of OH radicals with the hydrophilic part of sphingolipids. We compared the stopped-flow EPR spectroscopy and pulse radiolysis with optical detection methods to characterize radical intermediates formed in the reaction of OH radicals with glycerol, serinol and N-boc-serinol. Quantum chemical calculations were also performed to help interpret the observed experimental data. It was shown that H-abstraction from the terminal carbon atom is the main process that is realized for all the studied compounds. The presence of the unsubstituted amino group (-NH2) is seen to completely change the reaction properties of serinol in comparison with those observed in glycerol and N-boc serinol.


Asunto(s)
Glicerol/química , Radical Hidroxilo/química , Propanolaminas/química , Glicoles de Propileno/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Estructura Molecular , Radiólisis de Impulso , Esfingolípidos/química
14.
J Chem Phys ; 154(13): 134305, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33832237

RESUMEN

The dynamics of intramolecular hydrogen-bonding involving sulfur atoms as acceptors is studied using two-dimensional infrared (2DIR) spectroscopy. The molecular system is a tertiary alcohol whose donating hydroxy group is embedded in a hydrogen-bond potential with torsional C3-symmetry about the carbon-oxygen bond. The linear and 2DIR-spectra recorded in the OH-stretching region of the alcohol can be simulated very well using Kubo's line shape theory based on the cumulant expansion for evaluating the linear and nonlinear optical response functions. The correlation function for OH-stretching frequency fluctuations reveals an ultrafast component decaying with a time constant of 700 fs, which is in line with the apparent decay of the center line slopes averaged over absorption and bleach/emission signals. In addition, a quasi-static inhomogeneity is detected, which prevents the 2DIR line shape to fully homogenize within the observation window of 4 ps. The experimental data were then analyzed in more detail using a full ab initio approach that merges time-dependent structural information from classical molecular dynamics (MD) simulations with an OH-stretching frequency map derived from density functional theory (DFT). The latter method was also used to obtain a complementary transition dipole map to account for non-Condon effects. The 2DIR-spectra obtained from the MD/DFT method are in good agreement with the experimental data at early waiting delays, thereby corroborating an assignment of the fast decay of the correlation function to the dynamics of hydrogen-bond breakage and formation.

15.
Angew Chem Int Ed Engl ; 60(43): 23419-23426, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34387025

RESUMEN

Mechanistic insights into protein-ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand-induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site-directed spin labeling (SDSL) with distance measurements based on pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose-substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation-association mechanism for the formation of the twisted dimer upon ligand binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pentosiltransferasa/metabolismo , Quinazolinonas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Mutación , Pentosiltransferasa/química , Pentosiltransferasa/genética , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Quinazolinonas/química , Zymomonas/enzimología
16.
Biol Chem ; 402(1): 99-111, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544488

RESUMEN

Deoxyribozymes (DNAzymes) are single-stranded DNA molecules that catalyze a broad range of chemical reactions. The 10-23 DNAzyme catalyzes the cleavage of RNA strands and can be designed to cleave essentially any target RNA, which makes it particularly interesting for therapeutic and biosensing applications. The activity of this DNAzyme in vitro is considerably higher than in cells, which was suggested to be a result of the low intracellular concentration of bioavailable divalent cations. While the interaction of the 10-23 DNAzyme with divalent metal ions was studied extensively, the influence of monovalent metal ions on its activity remains poorly understood. Here, we characterize the influence of monovalent and divalent cations on the 10-23 DNAzyme utilizing functional and biophysical techniques. Our results show that Na+ and K+ affect the binding of divalent metal ions to the DNAzyme:RNA complex and considerably modulate the reaction rates of RNA cleavage. We observe an opposite effect of high levels of Na+ and K+ concentrations on Mg2+- and Mn2+-induced reactions, revealing a different interplay of these metals in catalysis. Based on these findings, we propose a model for the interaction of metal ions with the DNAzyme:RNA complex.


Asunto(s)
ADN Catalítico/metabolismo , ADN de Cadena Simple/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Sitios de Unión , Biocatálisis , ADN Catalítico/química , ADN de Cadena Simple/química , Iones/química , Iones/metabolismo , Potasio/química , Sodio/química
17.
Phys Chem Chem Phys ; 22(42): 24282-24290, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33107523

RESUMEN

Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful method for unraveling structures and dynamics of biomolecules. Out of the EPR tool box, Pulsed Electron-Electron Double Resonance spectroscopy (PELDOR or DEER) enables one to resolve such structures by providing distances between spin centers on the nanometer scale. Most commonly, both spin centers are spin labels or one is a spin label and the other is a paramagnetic metal ion, cluster, amino acid or cofactor radical. Often, the translation of the measured distances into structures is complicated by the long and flexible linker connecting the spin center of the spin label with the biomolecule. Nowadays, this challenge is overcome by computational methods but the currently available approaches have a rather large mean error of roughly 2-3 Å. Here, the new GFN-FF general force-field is combined with the fully automated Conformer Rotamer Ensemble Search Tool (CREST) [P. Pracht et al., Phys. Chem. Chem. Phys., 2020, 22, 7169-7192] to generate conformer ensembles of the R1 side chain (methanthiosulfonate spin label (MTSL) covalently bound to a cysteine) in several cysteine mutants of azurin and T4 lysozyme. In order to determine the Cu2+-R1 and R1-R1 distance distributions, GFN-FF based MD simulations were carried out starting from the most probable R1 conformers found by CREST. The deviation between theory and experiment in mean inter-spin distances was 0.98 Å on average for the mutants of azurin (1.84 Å for T4 lysozyme) and the right modality was obtained. The error of the most probable distances for each mode was only 0.76 Å in the case of azurin. This CREST/MD procedure does thus enable precise distance-to-structure translations and provides a means to disentangle label from protein conformers.


Asunto(s)
Sustancias Macromoleculares/química , Modelos Moleculares , Óxidos de Nitrógeno/química , Azurina/genética , Muramidasa/genética , Mutación , Conformación Proteica , Marcadores de Spin
18.
Molecules ; 25(16)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806560

RESUMEN

Benzo[1,2-d;4,5-d']bis[1,3]dithioles are important building blocks within a range of functional materials such as fluorescent dyes, conjugated polymers, and stable trityl radicals. Access to these is usually gained via tert-butyl aryl sulfides, the synthesis of which requires the use of highly malodorous tert-butyl thiol and relies on SNAr-chemistry requiring harsh reaction conditions, while giving low yields. In the present work, S-tert-butyl isothiouronium bromide is successfully applied as an odorless surrogate for tert-butyl thiol. The C-S bond formation is carried out under palladium catalysis with the thiolate formed in situ resulting in high yields of tert-butyl aryl sulfides. The subsequent formation of benzo[1,2-d;4,5-d']bis[1,3]dithioles is here achieved with scandium(III)triflate, a less harmful reagent than the usually used Lewis acids, e.g., boron trifluoride or tetrafluoroboric acid. This enables a convenient and environmentally more compliant access to high yields of benzo[1,2-d;4,5-d']bis[1,3]dithioles.


Asunto(s)
Paladio/química , Sulfuros/química , Sulfuros/síntesis química , Catálisis
19.
Angew Chem Int Ed Engl ; 59(20): 7891-7896, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-31981397

RESUMEN

We present herein a novel nitroxide spin label-containing RNA triphosphate TPT3NO and its application for site-specific spin-labeling of RNA through in vitro transcription using an expanded genetic alphabet. Our strategy allows the facile preparation of spin-labeled RNAs with sizes ranging from short RNA oligonucleotides to large, complex RNA molecules with over 370 nucleotides by standard in vitro transcription. As a proof of concept, inter-spin distance distributions are measured by pulsed electron paramagnetic resonance (EPR) spectroscopy in short self-complementary RNA sequences and in a well-studied 185 nucleotide non-coding RNA, the B. subtilis glmS ribozyme. The approach is then applied to probe for the first time the folding of the 377 nucleotide A-region of the long non-coding RNA Xist, by PELDOR.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Transcripción Genética , Óxidos de Nitrógeno/química , Conformación de Ácido Nucleico , Marcadores de Spin
20.
Angew Chem Int Ed Engl ; 59(24): 9767-9772, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32329172

RESUMEN

The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site-directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in-cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide-functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm, and shows high stability against reduction. Using this label, the guanine-nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Marcadores de Spin , Compuestos de Tritilo/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA