Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37882764

RESUMEN

The node and notochord are important signaling centers organizing the dorso-ventral patterning of cells arising from neuro-mesodermal progenitors forming the embryonic body anlage. Owing to the scarcity of notochord progenitors and notochord cells, a comprehensive identification of regulatory elements driving notochord-specific gene expression has been lacking. Here, we have used ATAC-seq analysis of FACS-purified notochord cells from Theiler stage 12-13 mouse embryos to identify 8921 putative notochord enhancers. In addition, we established a new model for generating notochord-like cells in culture, and found 3728 of these enhancers occupied by the essential notochord control factors brachyury (T) and/or Foxa2. We describe the regulatory landscape of the T locus, comprising ten putative enhancers occupied by these factors, and confirmed the regulatory activity of three of these elements. Moreover, we characterized seven new elements by knockout analysis in embryos and identified one new notochord enhancer, termed TNE2. TNE2 cooperates with TNE in the trunk notochord, and is essential for notochord differentiation in the tail. Our data reveal an essential role of Foxa2 in directing T-expressing cells towards the notochord lineage.


Asunto(s)
Elementos de Facilitación Genéticos , Notocorda , Ratones , Animales , Elementos de Facilitación Genéticos/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética
2.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37082965

RESUMEN

Cardiac lineage specification in the mouse is controlled by TGFß and WNT signaling. From fly to fish, BMP has been identified as an indispensable heart inducer. A detailed analysis of the role of Bmp4 and its effectors Smad1/5, however, was still missing. We show that Bmp4 induces cardiac mesoderm formation in murine embryonic stem cells in vitro. Bmp4 first activates Wnt3 and upregulates Nodal. pSmad1/5 and the WNT effector Tcf3 form a complex, and together with pSmad2/3 activate mesoderm enhancers and Eomes. They then cooperate with Eomes to consolidate the expression of many mesoderm factors, including T. Eomes and T form a positive- feedback loop and open additional enhancers regulating early mesoderm genes, including the transcription factor Mesp1, establishing the cardiac mesoderm lineage. In parallel, the neural fate is suppressed. Our data confirm the pivotal role of Bmp4 in cardiac mesoderm formation in the mouse. We describe in detail the consecutive and cooperative actions of three signaling pathways, BMP, WNT and Nodal, and their effector transcription factors, during cardiac mesoderm specification.


Asunto(s)
Corazón , Factores de Transcripción , Ratones , Animales , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Mesodermo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt/genética , Proteína Morfogenética Ósea 4/metabolismo
3.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822716

RESUMEN

The node-streak border region comprising notochord progenitor cells (NPCs) at the posterior node and neuro-mesodermal progenitor cells (NMPs) in the adjacent epiblast is the prime organizing center for axial elongation in mouse embryos. The T-box transcription factor brachyury (T) is essential for both formation of the notochord and maintenance of NMPs, and thus is a key regulator of trunk and tail development. The T promoter controlling T expression in NMPs and nascent mesoderm has been characterized in detail; however, control elements for T expression in the notochord have not been identified yet. We have generated a series of deletion alleles by CRISPR/Cas9 genome editing in mESCs, and analyzed their effects in mutant mouse embryos. We identified a 37 kb region upstream of T that is essential for notochord function and tailbud outgrowth. Within that region, we discovered a T-binding enhancer required for notochord cell specification and differentiation. Our data reveal a complex regulatory landscape controlling cell type-specific expression and function of T in NMP/nascent mesoderm and node/notochord, allowing proper trunk and tail development.


Asunto(s)
Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Proteínas Fetales/genética , Proteínas de Dominio T Box/genética , Cola (estructura animal)/crecimiento & desarrollo , Secuencia de Aminoácidos/genética , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Notocorda/crecimiento & desarrollo , Notocorda/metabolismo , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cola (estructura animal)/metabolismo
4.
Nat Cell Biol ; 26(6): 868-877, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849542

RESUMEN

Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.


Asunto(s)
Apoptosis , Linaje de la Célula , Metilación de ADN , Endodermo , Regulación del Desarrollo de la Expresión Génica , Animales , Endodermo/citología , Endodermo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fagocitosis , Ratones Endogámicos C57BL , Ratones , Diferenciación Celular , Femenino , Desarrollo Embrionario , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ratones Transgénicos , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo
5.
Science ; 370(6522)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303587

RESUMEN

Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Madre Embrionarias de Ratones/fisiología , Tubo Neural/embriología , Somitos/embriología , Animales , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Piridinas/farmacología , Pirimidinas/farmacología , Proteínas de Dominio T Box/genética , Proteínas Wnt/antagonistas & inhibidores
6.
Dev Cell ; 42(5): 514-526.e7, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28826820

RESUMEN

The spinal cord and mesodermal tissues of the trunk such as the vertebral column and skeletal musculature derive from neuro-mesodermal progenitors (NMPs). Sox2, Brachyury (T), and Tbx6 have been correlated with NMP potency and lineage choice; however, their exact role and interaction in these processes have not yet been revealed. Here we present a global analysis of NMPs and their descending lineages performed on purified cells from embryonic day 8.5 wild-type and mutant embryos. We show that T, cooperatively with WNT signaling, controls the progenitor state and the switch toward the mesodermal fate. Sox2 acts antagonistically and promotes neural development. T is also involved in remodeling the chromatin for mesodermal development. Tbx6 reinforces the mesodermal fate choice, represses the progenitor state, and confers paraxial fate commitment. Our findings refine previous models and establish molecular principles underlying mammalian trunk development, comprising NMP maintenance, lineage choice, and mesoderm formation.


Asunto(s)
Linaje de la Célula/genética , Proteínas Fetales/metabolismo , Mesodermo/citología , Neuronas/citología , Factores de Transcripción SOXB1/metabolismo , Células Madre/citología , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Fetales/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Biológicos , Neuronas/metabolismo , Factores de Transcripción SOXB1/genética , Análisis de la Célula Individual , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA