Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(2): 461-474, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36256599

RESUMEN

Gaucher disease type 3 is a chronic neuronopathic disorder with wide-ranging effects, including hepatosplenomegaly, anaemia, thrombocytopenia, skeletal disease and diverse neurological manifestations. Biallelic mutations in GBA1 reduce lysosomal acid ß-glucosidase activity, and its substrates, glucosylceramide and glucosylsphingosine, accumulate. Enzyme replacement therapy and substrate reduction therapy ameliorate systemic features of Gaucher disease, but no therapies are approved for neurological manifestations. Venglustat is an investigational, brain-penetrant, glucosylceramide synthase inhibitor with potential to improve the disease by rebalancing influx of glucosylceramide with impaired lysosomal recycling. The Phase 2, open-label LEAP trial (NCT02843035) evaluated orally administered venglustat 15 mg once-daily in combination with maintenance dose of imiglucerase enzyme replacement therapy during 1 year of treatment in 11 adults with Gaucher disease type 3. Primary endpoints were venglustat safety and tolerability and change in concentration of glucosylceramide and glucosylsphingosine in CSF from baseline to Weeks 26 and 52. Secondary endpoints included change in plasma concentrations of glucosylceramide and glucosylsphingosine, venglustat pharmacokinetics in plasma and CSF, neurologic function, infiltrative lung disease and systemic disease parameters. Exploratory endpoints included changes in brain volume assessed with volumetric MRI using tensor-based morphometry, and resting functional MRI analysis of regional brain activity and connectivity between resting state networks. Mean (SD) plasma venglustat AUC0-24 on Day 1 was 851 (282) ng•h/ml; Cmax of 58.1 (26.4) ng/ml was achieved at a median tmax 2.00 h. After once-daily venglustat, plasma concentrations (4 h post-dose) were higher compared with Day 1, indicating ∼2-fold accumulation. One participant (Patient 9) had low-to-undetectable venglustat exposure at Weeks 26 and 52. Based on mean plasma and CSF venglustat concentrations (excluding Patient 9), steady state appeared to be reached on or before Week 4. Mean (SD) venglustat concentration at Week 52 was 114 (65.8) ng/ml in plasma and 6.14 (3.44) ng/ml in CSF. After 1 year of treatment, median (inter-quartile range) glucosylceramide decreased 78% (72, 84) in plasma and 81% (77, 83) in CSF; median (inter-quartile range) glucosylsphingosine decreased 56% (41, 60) in plasma and 70% (46, 76) in CSF. Ataxia improved slightly in nine patients: mean (SD, range) total modified Scale for Assessment and Rating of Ataxia score decreased from 2.68 [1.54 (0.0 to 5.5)] at baseline to 1.55 [1.88 (0.0 to 5.0)] at Week 52 [mean change: -1.14 (95% CI: -2.06 to -0.21)]. Whole brain volume increased slightly in patients with venglustat exposure and biomarker reduction in CSF (306.7 ± 4253.3 mm3) and declined markedly in Patient 9 (-13894.8 mm3). Functional MRI indicated stronger connectivity at Weeks 26 and 52 relative to baseline between a broadly distributed set of brain regions in patients with venglustat exposure and biomarker reduction but not Patient 9, although neurocognition, assessed by Vineland II, deteriorated in all domains over time, which illustrates disease progression despite the intervention. There were no deaths, serious adverse events or discontinuations. In adults with Gaucher disease type 3 receiving imiglucerase, addition of once-daily venglustat showed acceptable safety and tolerability and preliminary evidence of clinical stability with intriguing but intrinsically inconsistent signals in selected biomarkers, which need to be validated and confirmed in future research.


Asunto(s)
Enfermedad de Gaucher , Enfermedades del Sistema Nervioso , Humanos , Adulto , Glucosilceramidasa/uso terapéutico , Glucosilceramidasa/genética , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Glucosilceramidas/uso terapéutico , Enfermedad Crónica , Biomarcadores , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Ataxia
2.
Mol Genet Metab ; 138(3): 107525, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796138

RESUMEN

Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo IV , Enfermedad del Almacenamiento de Glucógeno , Enfermedades Neurodegenerativas , Preescolar , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo IV/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/terapia , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/terapia , Glucógeno
3.
J Nutr ; 153(7): 1994-2003, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229630

RESUMEN

BACKGROUND: Reduced plasma vitamin C concentrations in chronic diseases may result from abnormal urinary excretion of vitamin C: a renal leak. We hypothesized that vitamin C renal leak may be associated with disease-mediated renal dysregulation, resulting in aberrant vitamin C renal reabsorption and increased urinary loss. OBJECTIVES: We investigated the prevalence, clinical characteristics, and genomic associations of vitamin C renal leak in Fabry disease, an X-linked lysosomal disease associated with renal tubular dysfunction and low plasma vitamin C concentrations. METHODS: We conducted a non-randomized cross-sectional cohort study of men aged 24-42 y, with Fabry disease (n = 34) and controls without acute or chronic disease (n = 33). To match anticipated plasma vitamin C concentrations, controls were placed on a low-vitamin C diet 3 wk before inpatient admission. To determine the primary outcome of vitamin C renal leak prevalence, subjects were fasted overnight, and matched urine and fasting plasma vitamin C measurements were obtained the following morning. Vitamin C renal leak was defined as presence of urinary vitamin C at plasma concentrations below 38 µM. Exploratory outcomes assessed the association between renal leak and clinical parameters, and genomic associations with renal leak using single nucleotide polymorphisms (SNPs) in the vitamin C transporter SLC23A1. RESULTS: Compared with controls, the Fabry cohort had 16-fold higher odds of renal leak (6% vs. 52%; OR: 16; 95% CI: 3.30, 162; P < 0.001). Renal leak was associated with higher protein creatinine ratio (P < 0.01) and lower hemoglobin (P = 0.002), but not estimated glomerular filtration rate (P = 0.54). Renal leak, but not plasma vitamin C, was associated with a nonsynonymous single nucleotide polymorphism in vitamin C transporter SLC23A1 (OR: 15; 95% CI: 1.6, 777; P = 0.01). CONCLUSIONS: Increased prevalence of renal leak in adult men with Fabry disease may result from dysregulated vitamin C renal physiology and is associated with abnormal clinical outcomes and genomic variation.


Asunto(s)
Enfermedad de Fabry , Adulto , Masculino , Humanos , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/orina , Ácido Ascórbico , Estudios Transversales , Riñón/metabolismo , Vitaminas , Genómica , Tasa de Filtración Glomerular
4.
Am J Hum Genet ; 104(5): 925-935, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982609

RESUMEN

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.


Asunto(s)
Encéfalo/anomalías , Leucoencefalopatías/etiología , Mutación , Osteocondrodisplasias/etiología , Osteosclerosis/etiología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Adolescente , Adulto , Alelos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Preescolar , Femenino , Humanos , Leucoencefalopatías/patología , Masculino , Ratones , Ratones Noqueados , Osteocondrodisplasias/patología , Osteosclerosis/patología , Fenotipo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Adulto Joven
5.
Genet Med ; 23(1): 192-201, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32994552

RESUMEN

PURPOSE: To assess the utility of globotriaosylsphingosine (lyso-Gb3) for clinical monitoring of treatment response in patients with Fabry disease receiving migalastat. METHODS: A post hoc analysis evaluated data from 97 treatment-naive and enzyme replacement therapy (ERT)-experienced patients with migalastat-amenable GLA variants from FACETS (NCT00925301) and ATTRACT (NCT01218659) and subsequent open-label extension studies. The relationship between plasma lyso-Gb3 and measures of Fabry disease progression (left ventricular mass index [LVMi], estimated glomerular filtration rate [eGFR], and pain) and the relationship between lyso-Gb3 and incidence of Fabry-associated clinical events (FACEs) were assessed in both groups. The relationship between changes in lyso-Gb3 and kidney interstitial capillary (KIC) globotriaosylceramide (Gb3) inclusions was assessed in treatment-naive patients. RESULTS: No significant correlations were identified between changes in lyso-Gb3 and changes in LVMi, eGFR, or pain. Neither baseline lyso-Gb3 levels nor the rate of change in lyso-Gb3 levels during treatment predicted FACE occurrences in all patients or those receiving migalastat for ≥24 months. Changes in lyso-Gb3 correlated with changes in KIC Gb3 inclusions in treatment-naive patients. CONCLUSIONS: Although used as a pharmacodynamic biomarker in research and clinical studies, plasma lyso-Gb3 may not be a suitable biomarker for monitoring treatment response in migalastat-treated patients.


Asunto(s)
Enfermedad de Fabry , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapéutico , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Humanos , alfa-Galactosidasa/genética
6.
Genet Med ; 23(12): 2352-2359, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34446925

RESUMEN

PURPOSE: Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS: A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS: We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION: We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.


Asunto(s)
Leucoencefalopatías , Estudios Transversales , Progresión de la Enfermedad , Humanos , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Fenotipo
7.
Mol Genet Metab ; 134(3): 274-280, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663554

RESUMEN

Gaucher disease (GD) is a rare lysosomal storage disorder that is divided into three subtypes based on presentation of neurological manifestations. Distinguishing between the types has important implications for treatment and counseling. Yet, patients with neuronopathic forms of GD, types 2 and 3, often present at young ages and can have overlapping phenotypes. It has been shown that new technologies employing artificial intelligence and facial recognition software can assist with dysmorphology assessments. Though classically not associated nor previously described with a dysmorphic facial phenotype, this study investigated whether a facial recognition platform could distinguish between photos of patients with GD2 and GD3 and discriminate between them and photos of healthy controls. Each cohort included over 100 photos. A cross validation scheme including a series of binary comparisons between groups was used. Outputs included a composite photo of each cohort and either a receiver operating characteristic curve or a confusion matrix. Binary comparisons showed that the software could correctly group photos at least 89% of the time. Multiclass comparison between GD2, GD3, and healthy controls demonstrated a mean accuracy of 76.6%, compared to a 37.7% chance for random comparison. Both GD2 and GD3 have now been added to the facial recognition platform as established syndromes that can be identified by the algorithm. These results suggest that facial recognition and artificial intelligence, though no substitute for other diagnostic methods, may aid in the recognition of neuronopathic GD. The algorithm, in concert with other clinical features, also appears to distinguish between young patients with GD2 and GD3, suggesting that this tool can help facilitate earlier implementation of appropriate management.


Asunto(s)
Inteligencia Artificial/normas , Reconocimiento Facial , Enfermedad de Gaucher/fisiopatología , Fenotipo , Programas Informáticos/normas , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Enfermedad de Gaucher/clasificación , Enfermedad de Gaucher/diagnóstico , Humanos , Lactante , Recién Nacido , Masculino , Anomalías Musculoesqueléticas , Curva ROC , Adulto Joven
8.
Ann Neurol ; 88(2): 264-273, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32342562

RESUMEN

OBJECTIVE: Genome sequencing (GS) is promising for unsolved leukodystrophies, but its efficacy has not been prospectively studied. METHODS: A prospective time-delayed crossover design trial of GS to assess the efficacy of GS as a first-line diagnostic tool for genetic white matter disorders took place between December 1, 2015 and September 27, 2017. Patients were randomized to receive GS immediately with concurrent standard of care (SoC) testing, or to receive SoC testing for 4 months followed by GS. RESULTS: Thirty-four individuals were assessed at interim review. The genetic origin of 2 patient's leukoencephalopathy was resolved before randomization. Nine patients were stratified to the immediate intervention group and 23 patients to the delayed-GS arm. The efficacy of GS was significant relative to SoC in the immediate (5/9 [56%] vs 0/9 [0%]; Wild-Seber, p < 0.005) and delayed (control) arms (14/23 [61%] vs 5/23 [22%]; Wild-Seber, p < 0.005). The time to diagnosis was significantly shorter in the immediate-GS group (log-rank test, p = 0.04). The overall diagnostic efficacy of combined GS and SoC approaches was 26 of 34 (76.5%, 95% confidence interval = 58.8-89.3%) in <4 months, greater than historical norms of <50% over 5 years. Owing to loss of clinical equipoise, the trial design was altered to a single-arm observational study. INTERPRETATION: In this study, first-line GS provided earlier and greater diagnostic efficacy in white matter disorders. We provide an evidence-based diagnostic testing algorithm to enable appropriate clinical GS utilization in this population. ANN NEUROL 2020;88:264-273.


Asunto(s)
Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Análisis de Secuencia de ADN/métodos , Niño , Preescolar , Estudios Cruzados , Femenino , Humanos , Lactante , Masculino , Estudios Prospectivos , Sustancia Blanca/patología
9.
Metab Brain Dis ; 36(7): 2155-2167, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33963976

RESUMEN

Mucolipidosis type IV (MLIV; OMIM 252,650) is an autosomal recessive lysosomal disorder caused by mutations in MCOLN1. MLIV causes psychomotor impairment and progressive vision loss. The major hallmarks of postnatal brain MRI are hypomyelination and thin corpus callosum. Human brain pathology data is scarce and demonstrates storage of various inclusion bodies in all neuronal cell types. The current study describes novel fetal brain MRI and neuropathology findings in a fetus with MLIV. Fetal MRI was performed at 32 and 35 weeks of gestation due to an older sibling with spastic quadriparesis, visual impairment and hypomyelination. Following abnormal fetal MRI results, the parents requested termination of pregnancy according to Israeli regulations. Fetal autopsy was performed after approval of the high committee for pregnancy termination. A genetic diagnosis of MLIV was established in the fetus and sibling. Sequential fetal brain MRI showed progressive curvilinear hypointensities on T2-weighted images in the frontal deep white matter and a thin corpus callosum. Fetal brain pathology exhibited a thin corpus callosum and hypercellular white matter composed of reactive astrocytes and microglia, multifocal white matter abnormalities with mineralized deposits, and numerous aggregates of microglia with focal intracellular iron accumulation most prominent in the frontal lobes. This is the first description in the literature of brain MRI and neuropathology in a fetus with MLIV. The findings demonstrate prenatal white matter involvement with significant activation of microglia and astrocytes and impaired iron metabolism.


Asunto(s)
Mucolipidosis , Canales de Potencial de Receptor Transitorio , Sustancia Blanca , Femenino , Humanos , Hierro/metabolismo , Mucolipidosis/diagnóstico por imagen , Mucolipidosis/genética , Embarazo , Diagnóstico Prenatal , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Sustancia Blanca/metabolismo
10.
J Lipid Res ; 61(11): 1410-1423, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32868283

RESUMEN

Fabry disease is caused by deficient activity of α-galactosidase A, an enzyme that hydrolyzes the terminal α-galactosyl moieties from glycolipids and glycoproteins, and subsequent accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3), and galabiosylceramide. However, there is no known link between these compounds and disease severity. In this study, we compared Gb3 isoforms (various fatty acids) and lyso-Gb3 analogs (various sphingosine modifications) in two strains of Fabry disease mouse models: a pure C57BL/6 (B6) background or a B6/129 mixed background, with the latter exhibiting more prominent cardiac and renal hypertrophy and thermosensation deficits. Total Gb3 and lyso-Gb3 levels in the heart, kidney, and dorsal root ganglion (DRG) were similar in the two strains. However, levels of the C20-fatty acid isoform of Gb3 and particular lyso-Gb3 analogs (+18, +34) were significantly higher in Fabry-B6/129 heart tissue when compared with Fabry-B6. By contrast, there was no difference in Gb3 and lyso-Gb3 isoforms/analogs in the kidneys and DRG between the two strains. Furthermore, using immunohistochemistry, we found that Gb3 massively accumulated in DRG mechanoreceptors, a sensory neuron subpopulation with preserved function in Fabry disease. However, Gb3 accumulation was not observed in nonpeptidergic nociceptors, the disease-relevant subpopulation that has remarkably increased isolectin-B4 (the marker of nonpeptidergic nociceptors) binding and enlarged cell size. These findings suggest that specific species of Gb3 or lyso-Gb3 may play major roles in the pathogenesis of Fabry disease, and that Gb3 and lyso-Gb3 are not responsible for the pathology in all tissues or cell types.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Fabry/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Enfermedad de Fabry/genética , Femenino , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Índice de Severidad de la Enfermedad
11.
J Biol Chem ; 294(18): 7445-7459, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30898877

RESUMEN

RNA polymerase III (Pol III) is an essential enzyme responsible for the synthesis of several small noncoding RNAs, a number of which are involved in mRNA translation. Recessive mutations in POLR3A, encoding the largest subunit of Pol III, cause POLR3-related hypomyelinating leukodystrophy (POLR3-HLD), characterized by deficient central nervous system myelination. Identification of the downstream effectors of pathogenic POLR3A mutations has so far been elusive. Here, we used CRISPR-Cas9 to introduce the POLR3A mutation c.2554A→G (p.M852V) into human cell lines and assessed its impact on Pol III biogenesis, nuclear import, DNA occupancy, transcription, and protein levels. Transcriptomic profiling uncovered a subset of transcripts vulnerable to Pol III hypofunction, including a global reduction in tRNA levels. The brain cytoplasmic BC200 RNA (BCYRN1), involved in translation regulation, was consistently affected in all our cellular models, including patient-derived fibroblasts. Genomic BC200 deletion in an oligodendroglial cell line led to major transcriptomic and proteomic changes, having a larger impact than those of POLR3A mutations. Upon differentiation, mRNA levels of the MBP gene, encoding myelin basic protein, were significantly decreased in POLR3A-mutant cells. Our findings provide the first evidence for impaired Pol III transcription in cellular models of POLR3-HLD and identify several candidate effectors, including BC200 RNA, having a potential role in oligodendrocyte biology and involvement in the disease.


Asunto(s)
Regulación hacia Abajo/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Mutación , ARN Polimerasa III/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Genes Recesivos , Células HeLa , Humanos
12.
Mol Genet Metab ; 131(3): 358-363, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33183916

RESUMEN

The clinical phenotype of Gaucher disease type 3 (GD3), a neuronopathic lysosomal storage disorder, encompasses a wide array of neurological manifestations including neuro-ophthalmological findings, developmental delay, and seizures including progressive myoclonic epilepsy. Electroencephalography (EEG) is a widely available tool used to identify abnormalities in cerebral function, as well as epileptiform abnormalities indicating an increased risk of seizures. We characterized the EEG findings in GD3, reviewing 67 patients with 293 EEGs collected over nearly 50 years. Over 93% of patients had some form of EEG abnormality, most consisting of background slowing (90%), followed by interictal epileptiform discharges (IEDs) (54%), and photoparoxysmal responses (25%). The seven patients without background slowing were all under age 14 (mean 6.7 years). There was a history of seizures in 37% of this cohort; only 30% of these had IEDs on EEG. Conversely, only 56% of patients with IEDs had a history of seizures. These observed EEG abnormalities document an important aspect of the natural history of GD3 and could potentially assist in identifying neurological involvement in a patient with subtle clinical findings. Additionally, this comprehensive description of longitudinal EEG data provides essential baseline data for understanding central nervous system involvement in neuronopathic GD.


Asunto(s)
Epilepsias Mioclónicas/genética , Enfermedad de Gaucher/genética , Malformaciones del Sistema Nervioso/genética , Convulsiones/genética , Adulto , Niño , Electroencefalografía , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/patología , Femenino , Enfermedad de Gaucher/diagnóstico por imagen , Enfermedad de Gaucher/patología , Humanos , Masculino , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/patología , Fenotipo , Convulsiones/diagnóstico por imagen , Convulsiones/patología , Adulto Joven
13.
J Inherit Metab Dis ; 43(2): 326-333, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31449323

RESUMEN

Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by α-galactosidase A (α-Gal A) deficiency. The progressive accumulation of globotriaosylceramide results in life-threatening complications, including renal, cardiac, and cerebrovascular diseases. The pharmacological chaperone migalastat was recently approved as an alternative to enzyme replacement therapy in patients with amenable mutations. In this article, we investigate the proportion of amenable mutations, related to phenotype, in a population of adult patients with FD in Switzerland. This study included 170 adult patients (n = 64 males) from 46 independent pedigrees with 39 different identified mutations over the last 59 years. Overall, 68% had the classic phenotype and 48% fulfilled the current amenability criteria. Migalastat was stopped in 2/11 (18%) patients: the only male classic patient, because of lack of efficacy based on lyso-Gb3 levels, and one patient with a benign variant. In males, the achieved enzyme activities in peripheral leucocytes under migalastat treatment differed from the activities in HEK-cells after incubation with migalastat (eg, 33% in PL vs 41% HEK-cells for p.F113L; 43% in leucocytes vs 36% in HEK-cells for p.N215S, 24-30% in leucocytes vs 96% in HEK-cells for S238N). In this national cohort, we found a relatively high proportion of patients with amenable GLA mutations, which, however, had heterogeneous extent of amenability: the higher the residual α-Gal A activity, the higher the chaperone effect. Further studies are required to investigate the long-term benefits of migalastat therapy depending on the achieved enzyme activities in different amenable mutations.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Bioensayo/normas , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Variación Genética , 1-Desoxinojirimicina/farmacología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Genotipo , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Estudios Prospectivos , Suiza , Adulto Joven , alfa-Galactosidasa/genética
14.
J Inherit Metab Dis ; 43(5): 1056-1059, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32242941

RESUMEN

Neuronopathic Gaucher disease (nGD) has a very wide clinical and genotypic spectrum. However, there is no consensus definition of nGD, including no description of how best to diagnostically separate the acute form-Gaucher type 2-from the subacute or chronic form-Gaucher type 3. In this article, we define the various forms of Gaucher disease with particular emphasis on the presence of gaze palsy in all patients with nGD. This consensus definition will help in both clinical diagnosis and appropriate patient recruitment to upcoming clinical trials.


Asunto(s)
Enfermedad de Gaucher/diagnóstico , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/fisiopatología , Genotipo , Glucosilceramidasa/deficiencia , Humanos , Oftalmoplejía/etiología , Terminología como Asunto
15.
Hum Mol Genet ; 26(22): 4506-4518, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973395

RESUMEN

Hypomyelinating leukodystrophies are heritable disorders defined by lack of development of brain myelin, but the cellular mechanisms of hypomyelination are often poorly understood. Mutations in TUBB4A, encoding the tubulin isoform tubulin beta class IVA (Tubb4a), result in the symptom complex of hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC). Additionally, TUBB4A mutations are known to result in a broad phenotypic spectrum, ranging from primary dystonia (DYT4), isolated hypomyelination with spastic quadriplegia, and an infantile onset encephalopathy, suggesting multiple cell types may be involved. We present a study of the cellular effects of TUBB4A mutations responsible for H-ABC (p.Asp249Asn), DYT4 (p.Arg2Gly), a severe combined phenotype with hypomyelination and encephalopathy (p.Asn414Lys), as well as milder phenotypes causing isolated hypomyelination (p.Val255Ile and p.Arg282Pro). We used a combination of histopathological, biochemical and cellular approaches to determine how these different mutations may have variable cellular effects in neurons and/or oligodendrocytes. Our results demonstrate that specific mutations lead to either purely neuronal, combined neuronal and oligodendrocytic or purely oligodendrocytic defects that closely match their respective clinical phenotypes. Thus, the DYT4 mutation that leads to phenotypes attributable to neuronal dysfunction results in altered neuronal morphology, but with unchanged tubulin quantity and polymerization, with normal oligodendrocyte morphology and myelin gene expression. Conversely, mutations associated with isolated hypomyelination (p.Val255Ile and p.Arg282Pro) and the severe combined phenotype (p.Asn414Lys) resulted in normal neuronal morphology but were associated with altered oligodendrocyte morphology, myelin gene expression, and microtubule dysfunction. The H-ABC mutation (p.Asp249Asn) that exhibits a combined neuronal and myelin phenotype had overlapping cellular defects involving both neuronal and oligodendrocyte cell types in vitro. Only mutations causing hypomyelination phenotypes showed altered microtubule dynamics and acted through a dominant toxic gain of function mechanism. The DYT4 mutation had no impact on microtubule dynamics suggesting a distinct mechanism of action. In summary, the different clinical phenotypes associated with TUBB4A reflect the selective and specific cellular effects of the causative mutations. Cellular specificity of disease pathogenesis is relevant to developing targeted treatments for this disabling condition.


Asunto(s)
Neuronas/patología , Oligodendroglía/patología , Tubulina (Proteína)/genética , Adolescente , Adulto , Atrofia/patología , Ganglios Basales/patología , Encéfalo/metabolismo , Encéfalo/patología , Catarata/congénito , Catarata/genética , Catarata/metabolismo , Catarata/patología , Cerebelo/patología , Niño , Preescolar , Femenino , Células HeLa , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patología , Imagen por Resonancia Magnética , Masculino , Microtúbulos/patología , Persona de Mediana Edad , Mutación , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Fenotipo , Tubulina (Proteína)/metabolismo , Adulto Joven
16.
Hum Mol Genet ; 26(6): 1182-1192, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158561

RESUMEN

Fabry disease is caused by deficient activity of α-galactosidase A and subsequent accumulation of glycosphingolipids (mainly globotriaosylceramide, Gb3), leading to multisystem organ dysfunction. Oxidative stress and nitric oxide synthase (NOS) uncoupling are thought to contribute to Fabry cardiovascular diseases. We hypothesized that decreased tetrahydrobiopterin (BH4) plays a role in the pathogenesis of Fabry disease. We found that BH4 was decreased in the heart and kidney but not in the liver and aorta of Fabry mice. BH4 was also decreased in the plasma of female Fabry patients, which was not corrected by enzyme replacement therapy (ERT). Gb3 levels were inversely correlated with BH4 levels in animal tissues and cultured patient cells. To investigate the role of BH4 deficiency in disease phenotypes, 12-month-old Fabry mice were treated with gene transfer-mediated ERT or substrate reduction therapy (SRT) for 6 months. In the Fabry mice receiving SRT but not ERT, BH4 deficiency was restored, concomitant with ameliorated cardiac and renal hypertrophy. Additionally, glutathione levels were decreased in Fabry mouse tissues in a sex-dependent manner. Renal BH4 levels were closely correlated with glutathione levels and inversely correlated with cardiac and kidney weight. In conclusion, this study showed that BH4 deficiency occurs in Fabry disease and may contribute to the pathogenesis of the disease through oxidative stress associated with a reduced antioxidant capacity of cells and NOS uncoupling. This study also suggested dissimilar efficacy of ERT and SRT in correcting pre-existing pathologies in Fabry disease.


Asunto(s)
Biopterinas/análogos & derivados , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/genética , alfa-Galactosidasa/genética , Animales , Biopterinas/deficiencia , Biopterinas/genética , Biopterinas/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Fabry/mortalidad , Enfermedad de Fabry/fisiopatología , Femenino , Glutatión/metabolismo , Glicoesfingolípidos/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo/genética , alfa-Galactosidasa/biosíntesis , alfa-Galactosidasa/metabolismo
17.
N Engl J Med ; 375(6): 545-55, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27509102

RESUMEN

BACKGROUND: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes. METHODS: The initial assay of mutant α-galactosidase forms that we used to categorize 67 patients with Fabry's disease for randomization to 6 months of double-blind migalastat or placebo (stage 1), followed by open-label migalastat from 6 to 12 months (stage 2) plus an additional year, had certain limitations. Before unblinding, a new, validated assay showed that 50 of the 67 participants had mutant α-galactosidase forms suitable for targeting by migalastat. The primary end point was the percentage of patients who had a response (≥50% reduction in the number of globotriaosylceramide inclusions per kidney interstitial capillary) at 6 months. We assessed safety along with disease substrates and renal, cardiovascular, and patient-reported outcomes. RESULTS: The primary end-point analysis, involving patients with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy, did not show a significant treatment effect: 13 of 32 patients (41%) who received migalastat and 9 of 32 patients (28%) who received placebo had a response at 6 months (P=0.30). Among patients with suitable mutant α-galactosidase who received migalastat for up to 24 months, the annualized changes from baseline in the estimated glomerular filtration rate (GFR) and measured GFR were -0.30±0.66 and -1.51±1.33 ml per minute per 1.73 m(2) of body-surface area, respectively. The left-ventricular-mass index decreased significantly from baseline (-7.7 g per square meter; 95% confidence interval [CI], -15.4 to -0.01), particularly when left ventricular hypertrophy was present (-18.6 g per square meter; 95% CI, -38.2 to 1.0). The severity of diarrhea, reflux, and indigestion decreased. CONCLUSIONS: Among all randomly assigned patients (with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy), the percentage of patients who had a response at 6 months did not differ significantly between the migalastat group and the placebo group. (Funded by Amicus Therapeutics; ClinicalTrials.gov numbers, NCT00925301 [study AT1001-011] and NCT01458119 [study AT1001-041].).


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Enfermedad de Fabry/tratamiento farmacológico , Riñón/química , Trihexosilceramidas/análisis , alfa-Galactosidasa/antagonistas & inhibidores , 1-Desoxinojirimicina/efectos adversos , 1-Desoxinojirimicina/uso terapéutico , Adolescente , Adulto , Anciano , Diarrea/tratamiento farmacológico , Diarrea/etiología , Método Doble Ciego , Enfermedad de Fabry/complicaciones , Femenino , Tasa de Filtración Glomerular , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Trihexosilceramidas/orina , Ultrasonografía , Adulto Joven , alfa-Galactosidasa/genética
18.
J Neuroinflammation ; 16(1): 276, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31883529

RESUMEN

BACKGROUND: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.


Asunto(s)
Microglía/metabolismo , Mucolipidosis/genética , Mucolipidosis/patología , Transcriptoma , Animales , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Humanos , Ratones , Ratones Transgénicos , Microglía/patología , Mucolipidosis/metabolismo
19.
J Inherit Metab Dis ; 42(3): 534-544, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30834538

RESUMEN

Pegunigalsidase alfa, a novel PEGylated, covalently crosslinked form of α-galactosidase A developed as enzyme replacement therapy (ERT) for Fabry disease (FD), was designed to increase plasma half-life and reduce immunogenicity, thereby enhancing efficacy compared with available products. Symptomatic adults with FD participated in this open-label, 3-month dose-ranging study, followed by a 9-month extension. Three cohorts were enrolled in a stepwise manner, each receiving increased doses of pegunigalsidase alfa: 0.2, 1.0, 2.0 mg/kg, via intravenous infusion every other week. Pharmacokinetic analysis occurred on Day 1 and Months 3, 6, and 12. Kidney biopsies at baseline and Month 6 assessed peritubular capillary globotriaosylceramide (Gb3) content. Renal function, cardiac parameters, and other clinical endpoints were assessed throughout. Treatment-emergent adverse events (AEs) and presence of immunoglobulin G (IgG) antidrug antibodies (ADAs) were assessed. Sixteen patients completed 1 year's treatment. Mean terminal plasma half-life (each cohort) ranged from 53 to 121 hours. All 11 male and 1 of 7 female patients presented with classic FD phenotype, in whom renal peritubular capillary Gb3 inclusions were reduced by 84%. Mean estimated glomerular filtration rate was 111 mL/min/1.73 m2 at baseline, remaining stable throughout treatment. Three patients developed treatment-induced IgG ADAs; following 1 year's treatment, all became ADA-negative. Nearly all treatment-emergent AEs were mild or moderate. One patient withdrew from the study following a serious related AE. Pegunigalsidase alfa may represent an advance in ERT for FD, based on its unique pharmacokinetics and apparent low immunogenicity.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Fabry/tratamiento farmacológico , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/administración & dosificación , alfa-Galactosidasa/farmacocinética , Adolescente , Adulto , Femenino , Tasa de Filtración Glomerular , Corazón/fisiopatología , Humanos , Internacionalidad , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
20.
PLoS Genet ; 12(4): e1005848, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27120463

RESUMEN

Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.


Asunto(s)
Autofagia/genética , Efecto Fundador , Genes Recesivos , Leucoencefalopatías/genética , Mutación , Proteínas de Transporte Vesicular/genética , Adulto , Secuencia de Aminoácidos , Animales , Muerte Celular/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA