Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(21): 8155-60, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22570503

RESUMEN

Metastasis from primary tumors remains a major problem for tumor therapy. In the search for markers of metastasis and more effective therapies, the tumor metabolome is relevant because of its importance to the malignant phenotype and metastatic capacity of tumor cells. Altered choline metabolism is a hallmark of cancer. More specifically, a decreased glycerophosphocholine (GPC) to phosphocholine (PC) ratio was reported in breast, ovarian, and prostate cancers. Improved strategies to exploit this altered choline metabolism are therefore required. However, the critical enzyme cleaving GPC to produce choline, the initial step in the pathway controlling the GPC/PC ratio, remained unknown. In the present work, we have identified the enzyme, here named EDI3 (endometrial differential 3). Purified recombinant EDI3 protein cleaves GPC to form glycerol-3-phosphate and choline. Silencing EDI3 in MCF-7 cells decreased this enzymatic activity, increased the intracellular GPC/PC ratio, and decreased downstream lipid metabolites. Downregulating EDI3 activity inhibited cell migration via disruption of the PKCα signaling pathway, with stable overexpression of EDI3 showing the opposite effect. EDI3 was originally identified in our screening study comparing mRNA levels in metastasizing and nonmetastasizing endometrial carcinomas. Both Kaplan-Meier and multivariate analyses revealed a negative association between high EDI3 expression and relapse-free survival time in both endometrial (P < 0.001) and ovarian (P = 0.029) cancers. Overall, we have identified EDI3, a key enzyme controlling GPC and choline metabolism. Because inhibition of EDI3 activity corrects the GPC/PC ratio and decreases the migration capacity of tumor cells, it represents a possible target for therapeutic intervention.


Asunto(s)
Neoplasias de la Mama/enzimología , Colina/metabolismo , Neoplasias Endometriales/enzimología , Neoplasias Ováricas/enzimología , Fosfolipasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Neoplasias de la Mama/secundario , Línea Celular Tumoral , Movimiento Celular/fisiología , Neoplasias Endometriales/secundario , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/secundario , Fosfolipasas/genética , Hidrolasas Diéster Fosfóricas/genética , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal/fisiología
2.
Nat Cell Biol ; 8(11): 1255-62, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17028579

RESUMEN

Fusion of vesicles into target membranes during many types of regulated exocytosis requires both SNARE-complex proteins and fusogenic lipids, such as phosphatidic acid. Mitochondrial fusion is less well understood but distinct, as it is mediated instead by the protein Mitofusin (Mfn). Here, we identify an ancestral member of the phospholipase D (PLD) superfamily of lipid-modifying enzymes that is required for mitochondrial fusion. Mitochondrial PLD (MitoPLD) targets to the external face of mitochondria and promotes trans-mitochondrial membrane adherence in a Mfn-dependent manner by hydrolysing cardiolipin to generate phosphatidic acid. These findings reveal that although mitochondrial fusion and regulated exocytic fusion are mediated by distinct sets of protein machinery, the underlying processes are unexpectedly linked by the generation of a common fusogenic lipid. Moreover, our findings suggest a novel basis for the mitochondrial fragmentation observed during apoptosis.


Asunto(s)
Exocitosis/fisiología , GTP Fosfohidrolasas/fisiología , Fusión de Membrana/fisiología , Membranas Mitocondriales/fisiología , Ácidos Fosfatidicos/metabolismo , Proteínas SNARE/fisiología , Animales , Western Blotting , Cardiolipinas/metabolismo , Dimerización , GTP Fosfohidrolasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Microscopía Confocal , Microscopía Electrónica , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células 3T3 NIH , Fosfolipasa D/química , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Interferencia de ARN , Transfección
3.
Curr Med Chem ; 16(14): 1718-45, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19442142

RESUMEN

Hyaluronan (hyaluronic acid, HA) is a linear naturally occurring polysaccharide formed from repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronate. Despite its relatively simple structure, HA is an extraordinarily versatile glycosaminoglycan currently receiving attention across a wide front of research areas. It has a very high molar mass, usually in the order of millions of Daltons, and possesses interesting visco-elastic properties based on its polymeric and polyelectrolyte characteristics. HA is omnipresent in the human body and in other vertebrates, occurring in almost all biological fluids and tissues, although the highest amounts of HA are found in the extracellular matrix of soft connective tissues. HA is involved in several key processes, including cell signaling, wound repair and regeneration, morphogenesis, matrix organization and pathobiology. Clinically, it is used as a diagnostic marker for many disease states including cancer, rheumatoid arthritis, liver pathologies, and as an early marker for impending rejection following organ transplantation. It is also used for supplementation of impaired synovial fluid in arthritic patients, following cataract surgery, as a filler in cosmetic and soft tissue surgery, as a device in several surgical procedures, particularly as an anti-adhesive following abdominal procedures, and also in tissue engineering. This review will provide an overview of the structure and physiological role of HA, as well as of its biomedical and industrial applications. Recent advances in biotechnological approaches for the preparation of HA-based materials, and as a component of tissue scaffolding for artificial organs will also be presented.


Asunto(s)
Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Animales , Humanos , Ácido Hialurónico/química , Hialuronoglucosaminidasa/metabolismo , Hidrólisis
4.
Carbohydr Res ; 341(17): 2826-34, 2006 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-17049501

RESUMEN

The degradation of high-molar-mass hyaluronan (HA) by copper(II) chloride and ascorbate was studied by means of rotational viscometry. It was found that even small amounts of CuCl(2) present in the oxidative system led to the pronounced degradation of HA, reflected in a rapid decrease of the dynamic viscosity of the biopolymer solution. Such degradation was induced by free radicals generated in elevated amounts in the presence of copper ions. Electron paramagnetic resonance investigations performed on a model oxidative system containing Cu(II) and ascorbic acid proved the formation of relatively stable ascorbate anion radicals resulting from the reaction of ascorbic acid with hydroxyl radicals. In this way, by scavenging the hydroxyl radicals, ascorbic acid protected HA from their degradative action. Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied to analyze the degraded HA. The results showed that only regular fragmentation of hyaluronan occurred using the mentioned oxidative system that led to the formation of HA oligomers with unaffected primary chemical structure.


Asunto(s)
Ácido Ascórbico/química , Cobre/química , Ácido Hialurónico/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radicales Libres/química , Peso Molecular , Detección de Spin/métodos , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA