Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochemistry ; 57(9): 1523-1532, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29412660

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory and tumor-promoting cytokine that occurs in two redox-dependent immunologically distinct conformational isoforms. The disease-related structural isoform of MIF (oxMIF) can be specifically and predominantly detected in the circulation of patients with inflammatory diseases and in tumor tissue, whereas the ubiquitously expressed isoform of MIF (redMIF) is abundantly expressed in healthy and diseased subjects. In this article, we report that cysteine 81 within MIF serves as a "switch cysteine" for the conversion of redMIF to oxMIF. Modulating cysteine 81 by thiol reactive agents leads to significant structural rearrangements of the protein, resulting in a decreased ß-sheet content and an increased random coil content, but maintaining the trimeric quaternary structure. This conformational change in the MIF molecule enables binding of oxMIF-specific antibodies BaxB01 and BaxM159, which showed beneficial activity in animal models of inflammation and cancer. Crystal structure analysis of the MIF-derived EPCALCS peptide, bound in its oxMIF-like conformation by the Fab fragment of BaxB01, revealed that this peptide adopts a curved conformation, making the central thiol protein oxidoreductase motif competent to undergo disulfide shuffling. We conclude that redMIF might reflect a latent zymogenic form of MIF, and formation of oxMIF leads to a physiologically relevant, i.e., enzymatically active, state.


Asunto(s)
Cisteína/química , Cisteína/metabolismo , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Especificidad de Anticuerpos , Dicroismo Circular , Cisteína/inmunología , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Disulfuro de Glutatión/química , Disulfuro de Glutatión/metabolismo , Humanos , Oxidorreductasas Intramoleculares/inmunología , Factores Inhibidores de la Migración de Macrófagos/inmunología , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Relación Estructura-Actividad
2.
J Immunol ; 195(5): 2343-52, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26209628

RESUMEN

Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine and counterregulator of glucocorticoids, is a potential therapeutic target. MIF is markedly different from other cytokines because it is constitutively expressed, stored in the cytoplasm, and present in the circulation of healthy subjects. Thus, the concept of targeting MIF for therapeutic intervention is challenging because of the need to neutralize a ubiquitous protein. In this article, we report that MIF occurs in two redox-dependent conformational isoforms. We show that one of the two isoforms of MIF, that is, oxidized MIF (oxMIF), is specifically recognized by three mAbs directed against MIF. Surprisingly, oxMIF is selectively expressed in the plasma and on the cell surface of immune cells of patients with different inflammatory diseases. In patients with acute infections or chronic inflammation, oxMIF expression correlated with inflammatory flare-ups. In addition, anti-oxMIF mAbs alleviated disease severity in mouse models of acute and chronic enterocolitis and improved, in synergy with glucocorticoids, renal function in a rat model of crescentic glomerulonephritis. We conclude that oxMIF represents the disease-related isoform of MIF; oxMIF is therefore a new diagnostic marker for inflammation and a relevant target for anti-inflammatory therapy.


Asunto(s)
Inflamación/inmunología , Inflamación/prevención & control , Factores Inhibidores de la Migración de Macrófagos/inmunología , Terapia Molecular Dirigida/métodos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Western Blotting , Dexametasona/inmunología , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Enterocolitis/inmunología , Enterocolitis/metabolismo , Enterocolitis/prevención & control , Citometría de Flujo , Glomerulonefritis/inmunología , Glomerulonefritis/metabolismo , Glomerulonefritis/prevención & control , Glucocorticoides/inmunología , Glucocorticoides/uso terapéutico , Humanos , Inflamación/metabolismo , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Conejos , Ratas Endogámicas WKY
3.
Mol Cancer Ther ; : OF1-OF11, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963557

RESUMEN

Radioimmunotherapy (RIT) uses monoclonal antibodies to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. Although RIT agents have gained FDA/EMA approval for certain hematologic malignancies, effectiveness of RIT in treating solid tumors remains limited. In this study, we present PreTarg-it®, a novel approach for pretargeted RIT, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxidized macrophage migration inhibitory factor (oxMIF) and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an i.v. injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1% to 3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of 3 days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint, whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors, such as pancreatic cancer, as well as those with late-stage malignancies.

4.
Mol Cancer Ther ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38833646

RESUMEN

Radioimmunotherapy (RIT) uses mAbs to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. While RIT agents have gained FDA/EMA approval for certain hematological malignancies, effectiveness of RIT in treating solid tumors remains limited. Here we present PreTarg-it®, a novel approach for pretargeted radioimmunotherapy, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxMIF and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an intravenous injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1-3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of three days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors such as pancreatic cancer, as well as those with late-stage malignancies.

5.
Redox Biol ; 75: 103264, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38972295

RESUMEN

MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Oxidación-Reducción , Unión Proteica , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/química , Humanos , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/química , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/química , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/química , Peroxidasa/metabolismo
6.
PLoS One ; 19(10): e0311837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39374239

RESUMEN

The oxidized form of Macrophage Migration Inhibitory Factor (oxMIF) has been identified as the disease-related isoform of MIF, exerting pathological functions in inflamed tissue. In this study, we aimed to explore the in vivo effects of the neutralizing anti-oxMIF antibody ON104 in a rat model of crescentic glomerulonephritis (CGN), to better understand its disease modifying activities. WKY rats received a single intravenous injection of a rabbit nephrotoxic serum (NTS), targeting rat glomerular basement membrane to induce CGN. On day 4 and day 6, ON104 was given intraperitoneally (i.p.) and on day 8 urine, blood and kidney tissue were collected. ON104 substantially attenuated the severity of CGN demonstrated by reduced proteinuria, hematuria, as well as lower levels of kidney injury molecule (KIM)-1. ON104 treatment preserved the glomerular morphology and suppressed crescent formation, a hallmark of the disease. On the cellular level, oxMIF neutralization by ON104 strongly reduced the number of macrophages and neutrophils within the inflamed kidneys. In vitro, we identified human neutrophils, but not monocytes, as main producers of oxMIF among total peripheral cells. The present study demonstrates that oxMIF is a pertinent therapeutic target in a model of CGN which mechanistically resembles human immune mediated CGN. In this model, neutralization of oxMIF by ON104 leads to an improvement in both urinary abnormalities and histological pathological characteristics of the disease. ON104, thus has the potential to become a novel disease-modifying drug for the treatment of glomerulonephritis and other inflammatory kidney diseases.


Asunto(s)
Glomerulonefritis , Factores Inhibidores de la Migración de Macrófagos , Animales , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/patología , Glomerulonefritis/metabolismo , Ratas , Humanos , Masculino , Ratas Endogámicas WKY , Modelos Animales de Enfermedad , Conejos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Oxidación-Reducción/efectos de los fármacos , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico
7.
Eur J Pharmacol ; 956: 175997, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37579967

RESUMEN

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic inflammatory cytokine that emerged as a pivotal regulator in the pathogenesis of several autoimmune diseases including rheumatoid arthritis (RA). MIF occurs in two immunologically distinct conformational isoforms, indicated as reduced (redMIF) and oxidized MIF (oxMIF) where the latter exerts disease-related activities. In this study we demonstrate the presence of circulating oxMIF in RA patients and investigate the in vivo effects of an oxMIF-neutralizing antibody in a murine model of RA. By advanced antibody engineering we generated the fully human anti-oxMIF antibody ON104 with abolished effector functions. The therapeutic potential of ON104 was tested in a model of Collagen-Induced Arthritis (CIA) in DBA/1j mice. At disease onset, the mice received ON104 twice a week for three weeks. Clinical symptoms were assessed daily, and histological examinations of the joints were performed at the end of the study. Antibody ON104, specifically targeting human and murine oxMIF, is highly affine and does not elicit effector functions in vitro. The treatment of CIA mice with ON104 profoundly modulated disease progression with marked amelioration of clinical signs of arthritis that was associated with reduced synovial and cartilage damage and reduced F4/80-positive macrophages in the joints. These data prove that oxMIF is a relevant target in a well-known model of human RA and its specific neutralization by the antibody ON104 ameliorates clinical and histological signs of the disease in the so-treated mice. Thus, ON104 represents a new and promising treatment option for RA and possibly other autoimmune diseases.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Factores Inhibidores de la Migración de Macrófagos , Humanos , Ratones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Ratones Endogámicos DBA
8.
Mol Cancer Ther ; 22(5): 555-569, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37067909

RESUMEN

High levels of macrophage migration inhibitory factor (MIF) in patients with cancer are associated with poor prognosis. Its redox-dependent conformational isoform, termed oxidized MIF (oxMIF), is a promising tumor target due to its selective occurrence in tumor lesions and at inflammatory sites. A first-generation anti-oxMIF mAb, imalumab, was investigated in clinical trials in patients with advanced solid tumors, where it was well tolerated and showed signs of efficacy. However, imalumab has a short half-life in humans, increased aggregation propensity, and an unfavorable pharmacokinetic profile. Here, we aimed to optimize imalumab by improving its physicochemical characteristics and boosting its effector functions. Point mutations introduced into the variable regions reduced hydrophobicity and the antibodies' aggregation potential, and increased plasma half-life and tumor accumulation in vivo, while retaining affinity and specificity to oxMIF. The introduction of mutations into the Fc region known to increase antibody-dependent cellular cytotoxicity resulted in enhanced effector functions of the novel antibodies in vitro, whereas reduced cytokine release from human peripheral blood mononuclear cells in the absence of target antigen by the engineered anti-oxMIF mAb ON203 versus imalumab reveals a favorable in vitro safety profile. In vivo, ON203 mAb demonstrated superior efficacy over imalumab in both prophylactic and established prostate cancer (PC3) mouse xenograft models. In summary, our data highlight the potential of the second-generation anti-oxMIF mAb ON203 as a promising immunotherapy for patients with solid tumors, warranting clinical evaluation.


Asunto(s)
Antineoplásicos , Factores Inhibidores de la Migración de Macrófagos , Neoplasias de la Próstata , Masculino , Ratones , Animales , Humanos , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/química , Leucocitos Mononucleares , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico
9.
Eur J Pharmacol ; 820: 206-216, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29274331

RESUMEN

New therapeutic agents are needed to overcome the toxicity and suboptimal efficacy observed in current treatment of glomerulonephritis (GN). BaxB01 is a fully human monoclonal antibody targeting a disease-related immunologically distinct isoform of Macrophage migration Inhibitory Factor (MIF), designated oxidized MIF (oxMIF) and locally expressed in inflammatory conditions. We report the pharmacokinetic profile of BaxB01, and its dose and exposure-related disease-modifying activity in experimentally induced rat GN. BaxB01 bound to rat oxMIF with high affinity and reduced rat macrophage migration in vitro. After intravenous administration in rats, BaxB01 demonstrated favorable pharmacokinetics, with a half-life of up to nine days. Disease modification was dose-related (≥ 10mg/kg) as demonstrated by significantly reduced proteinuria and diminished histopathological glomerular crescent formation. Importantly, a single dose was sufficient to establish an exposure-related, anti-inflammatory milieu via amelioration of glomerular cellular inflammation. Pharmacodynamic modeling corroborated these findings, consistently predicting plasma exposures that were effective in attenuating both anti-inflammatory activity and reducing loss of kidney function. This pharmacologic benefit on glomerular function and structure was sustained during established disease, while correlation analyses confirmed a link between the antibody's anti-inflammatory activity and reduced crescent formation in individual rats. Finally, safety assessment in rats showed that the experimental therapeutic was well tolerated without signs of systemic toxicity or negative impact on kidney function. These data define therapeutically relevant exposures correlated with mechanism-based activity in GN, while toxicological evaluation suggests a large therapeutic index and provides evidence for achieving safe and effective exposure to a MIF isoform-directed therapeutic in nephritis-associated disease.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/uso terapéutico , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/inmunología , Factores Inhibidores de la Migración de Macrófagos/inmunología , Terapia Molecular Dirigida , Seguridad , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/inmunología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Glomerulonefritis/metabolismo , Humanos , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Monocitos/citología , Monocitos/efectos de los fármacos , Isoformas de Proteínas/inmunología , Ratas
10.
Oncotarget ; 7(45): 73486-73496, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27636991

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, which was shown to be upregulated in cancers and to exhibit tumor promoting properties. Unlike other cytokines, MIF is ubiquitously present in the circulation and tissue of healthy subjects. We recently described a previously unrecognized, disease-related isoform of MIF, designated oxMIF, which is present in the circulation of patients with different inflammatory diseases. In this article, we report that oxMIF is also linked to different solid tumors as it is specifically expressed in tumor tissue from patients with colorectal, pancreatic, ovarian and lung cancer. Furthermore, oxMIF can be specifically targeted by a subset of phage display-derived fully human, monoclonal anti-MIF antibodies (mAbs) that were shown to neutralize pro-tumorigenic activities of MIF in vivo. We further demonstrate that anti-oxMIF mAbs sensitize human cancer cell lines (LNCaP, PC3, A2780 and A2780ADR) to the action of cytotoxic drugs (mitoxantrone, cisplatin and doxorubicin) in vitro and in an A2780 xenograft mouse model of ovarian cancer. We conclude that oxMIF is the disease related isoform of MIF in solid tumors and a potential new diagnostic marker and drug target in cancer.


Asunto(s)
Biomarcadores de Tumor , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Neoplasias/metabolismo , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Estudios de Casos y Controles , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/sangre , Terapia Molecular Dirigida , Neoplasias/sangre , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA