Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 119008, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663670

RESUMEN

Although desert dust promotes morbidity and mortality, it is exempt from regulations. Its health effects have been related to its inflammatory properties, which can vary between source regions. It remains unclear which constituents cause this variability. Moreover, whether long-range transported desert dust potentiates the hazardousness of local particulate matter (PM) is still unresolved. We aimed to assess the influence of long-range transported desert dust on the inflammatory potency of PM2.5 and PM10 collected in Cape Verde and to examine associated constituents. During a reference period and two Saharan dust events, 63 PM2.5 and PM10 samples were collected at four sampling stations. The content of water-soluble ions, elements, and organic and elemental carbon was measured in all samples and endotoxins in PM10 samples. The PM-induced release of inflammatory cytokines from differentiated THP-1 macrophages was evaluated. The association of interleukin (IL)-1ß release with PM composition was assessed using principal component (PC) regressions. PM2.5 from both dust events and PM10 from one event caused higher IL-1ß release than PM from the reference period. PC regressions indicated an inverse relation of IL-1ß release with sea spray ions in both size fractions and organic and elemental carbon in PM2.5. The PC with the higher regression coefficient suggested that iron and manganese may contribute to PM2.5-induced IL-1ß release. Only during the reference period, endotoxin content strongly differed between sampling stations and correlated with inflammatory potency. Our results demonstrate that long-range transported desert dust amplifies the hazardousness of local air pollution and suggest that, in PM2.5, iron and manganese may be important. Our data indicate that endotoxins are contained in local and long-range transported PM10 but only explain the variability in inflammatory potency of local PM10. The increasing inflammatory potency of respirable and inhalable PM from desert dust events warrants regulatory measures and risk mitigation strategies.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Material Particulado , Material Particulado/análisis , Material Particulado/toxicidad , Polvo/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Humanos , Tamaño de la Partícula , Inflamación/inducido químicamente , Sudáfrica , Monitoreo del Ambiente , África del Norte , Citocinas
2.
Part Fibre Toxicol ; 20(1): 39, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864207

RESUMEN

BACKGROUND: Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model. Therefore, we exposed ALI co-cultures of alveolar epithelial A549 cells and macrophage-like differentiated THP-1 cells to 10, 21, and 31 µg/cm² SD and DQ12 for 24 h using a Vitrocell Cloud system. Additionally, we exposed ALI co-cultures containing caspase (CASP)1-/- and NLRP3-/- THP-1 cells to SD. RESULTS: Characterization of nebulized DQ12 and SD revealed that over 90% of agglomerates of both dusts were smaller than 2.5 µm. Characterization of the ALI co-culture model revealed that it produced surfactant protein C and that THP-1 cells remained viable at the ALI. Moreover, wild type, CASP1-/-, and NLRP3-/- THP-1 cells had comparable levels of the surface receptors cluster of differentiation 14 (CD14), toll-like receptor 2 (TLR2), and TLR4. Exposing ALI co-cultures to non-cytotoxic doses of DQ12 and SD did not induce oxidative stress marker gene expression. SD but not DQ12 upregulated gene expressions of interleukin 1 Beta (IL1B), IL6, and IL8 as well as releases of IL-1ß, IL-6, IL-8, and tumor necrosis factor α (TNFα). Exposing wild type, CASP1-/-, and NLRP3-/- co-cultures to SD induced IL1B gene expression in all co-cultures whereas IL-1ß release was only induced in wild type co-cultures. In CASP1-/- and NLRP3-/- co-cultures, IL-6, IL-8, and TNFα releases were also reduced. CONCLUSIONS: Since surfactants can decrease the toxicity of poorly soluble particles, the higher potency of SD than DQ12 in this surfactant-producing ALI model emphasizes the importance of readily soluble SD components such as microbial compounds. The higher potency of SD than DQ12 also renders SD a potential alternative particulate positive control for studies addressing acute inflammatory effects. The high pro-inflammatory potency depending on NLRP3, CASP-1, and IL-1ß suggests that SD causes acute lung injury which may explain desert dust event-related increased respiratory morbidity and mortality.


Asunto(s)
Citocinas , Proteína con Dominio Pirina 3 de la Familia NLR , Citocinas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Técnicas de Cocultivo , Polvo , Factor de Necrosis Tumoral alfa , Interleucina-6 , Interleucina-8 , Inflamasomas/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Tensoactivos
3.
Small ; 18(17): e2200231, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35324067

RESUMEN

The European Green Deal outlines ambitions to build a more sustainable, climate neutral, and circular economy by 2050. To achieve this, the European Commission has published the Chemicals Strategy for Sustainability: Towards a Toxic-Free Environment, which provides targets for innovation to better protect human and environmental health, including challenges posed by hazardous chemicals and animal testing. The European project PATROLS (Physiologically Anchored Tools for Realistic nanOmateriaL hazard aSsessment) has addressed multiple aspects of the Chemicals Strategy for Sustainability by establishing a battery of new approach methodologies, including physiologically anchored human and environmental hazard assessment tools to evaluate the safety of engineered nanomaterials. PATROLS has delivered and improved innovative tools to support regulatory decision-making processes. These tools also support the need for reducing regulated vertebrate animal testing; when used at an early stage of the innovation pipeline, the PATROLS tools facilitate the safe and sustainable development of new nano-enabled products before they reach the market.


Asunto(s)
Nanoestructuras , Animales , Salud Ambiental , Unión Europea , Medición de Riesgo
4.
Part Fibre Toxicol ; 19(1): 23, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337343

RESUMEN

BACKGROUND: There is an increasing concern about the neurotoxicity of engineered nanomaterials (NMs). To investigate the effects of subchronic oral exposures to SiO2 and CeO2 NMs on Alzheimer's disease (AD)-like pathology, 5xFAD transgenic mice and their C57BL/6J littermates were fed ad libitum for 3 or 14 weeks with control food pellets, or pellets dosed with these respective NMs at 0.1% or 1% (w/w). Behaviour effects were evaluated by X-maze, string suspension, balance beam and open field tests. Brains were analysed for plaque load, beta-amyloid peptide levels, markers of oxidative stress and neuroinflammation. RESULTS: No marked behavioural impairments were observed in the mice exposed to SiO2 or CeO2 and neither treatment resulted in accelerated plaque formation, increased oxidative stress or inflammation. In contrast, the 5xFAD mice exposed to 1% CeO2 for 14 weeks showed significantly lower hippocampal Aß plaque load and improved locomotor activity compared to the corresponding controls. CONCLUSIONS: The findings from the present study suggest that long-term oral exposure to SiO2 or CeO2 NMs has no neurotoxic and AD-promoting effects. The reduced plaque burden observed in the mice following dietary CeO2 exposure warrants further investigation to establish the underlying mechanism, given the easy applicability of this administration method.


Asunto(s)
Enfermedad de Alzheimer , Nanoestructuras , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Exposición Dietética , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nanoestructuras/toxicidad , Placa Amiloide/inducido químicamente , Dióxido de Silicio/toxicidad
5.
Part Fibre Toxicol ; 19(1): 1, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34983569

RESUMEN

BACKGROUND: Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. RESULTS: This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. CONCLUSION: Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods.


Asunto(s)
Metadatos , Proyectos de Investigación , Bases de Datos Factuales , Reproducibilidad de los Resultados
6.
Small ; 17(15): e2004630, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33475244

RESUMEN

Would an engineered nanomaterial (ENM) still have the same identity once it reaches a secondary target tissue after a journey through several physiological compartments? Probably not. Does it matter? ENM pre-treatments may enhance the physiological relevance of in vitro testing via controlled transformation of the ENM identity. The implications of material transformation upon reactivity, cytotoxicity, inflammatory, and genotoxic potential of Ag and SiO2 ENM on advanced gastro-intestinal tract cell cultures and 3D liver spheroids are demonstrated. Pre-treatments are recommended for certain ENM only.


Asunto(s)
Nanoestructuras , Dióxido de Silicio , Técnicas In Vitro , Hígado
7.
Small ; 17(15): e2004223, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33458953

RESUMEN

With the rising interest in the effects of orally ingested engineered nanomaterials (ENMs), much effort is undertaken to develop and advance intestinal in vitro models. The cytotoxic, proinflammatory, and DNA damaging properties of polyvinylpyrrolidone-capped silver (Ag-PVP) and titanium dioxide (TiO2 , P25) ENM in four in vitro models of increasing complexity-from proliferating Caco-2 and HT29-MTX-E12 monocultures to long-term transwell triple cultures including THP-1 macrophages to reproduce the human intestine in healthy versus inflamed-like state-are studied. Results are compared against in vivo effects of the same ENM through intestinal tissue analysis from 28-day oral exposure studies in mice. Adverse responses are only observed in monocultures and suggest toxic potential for both ENM, typically showing stronger effects for Ag-PVP than for TiO2 . By contrast, no adverse effects are observed in either the transwell cultures or the analyzed murine tissues. The data provide further support that monoculture models represent a cost and time efficient tool for early-phase hazard assessment. However, the observed similarities in morphology and ENM effects in murine intestinal tissue and the in vitro triple culture model suggest that advanced multifacetted research questions concerning oral ENM exposure are more adequately addressed by the more complex and time intensive models.


Asunto(s)
Nanoestructuras , Plata , Animales , Células CACO-2 , Humanos , Intestinos , Ratones , Plata/toxicidad , Titanio/toxicidad
8.
Small ; 17(15): e2006252, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33354870

RESUMEN

The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pruebas de Toxicidad , Humanos , Técnicas In Vitro , Estados Unidos
9.
Chem Res Toxicol ; 34(3): 767-779, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33651939

RESUMEN

Transition metals play a key role in the pathogenic potential of urban particulate matter (PM). However, air quality regulations include exposure limits only for metals having a known toxic potential like Pb, As, Cd, and Ni, neglecting other transition metals like Fe and Cu. Fe and Cu are mainly found in the water-soluble fraction of PM. However, a fraction of the ions may persist strongly bound to the particles, thus potentially acting as surface reactive sites. The contribution of surface ions to the oxidative potential (OP) of PM is likely different from that of free ions since the redox activity of metals is modulated by their local chemical environment. The aim of this study was to investigate how Fe and Cu bound to carbonaceous particles affect the OP and associated toxicity of PM toward epithelial cells and macrophages. Carbonaceous nanoparticles (CNPs) having well-defined size were loaded with controlled amounts of Cu and Fe. The effect of Cu and Fe on the OP of CNPs was evaluated by electronic paramagnetic resonance (EPR) spectroscopy associated with the spin-trapping technique and correlated with the ability to induce cytotoxicity (LDH, WST-1), oxidative stress (Nrf2 translocation), and DNA damage (comet assay) on lung macrophages (NR8383) and/or epithelial cells (RLE-6TN). The release of pro-inflammatory cytokines (TNF-α, MCP-1, and CXCL2) by macrophages and epithelial cells was also investigated. The results indicate a major contribution of surface Cu to the surface reactivity of CNPs, while Fe has a minor role. At the same time, Cu increases the cytotoxicity of CNPs and their ability to induce oxidative stress and DNA damage. In contrast, surface Fe increases the release of pro-inflammatory cytokines by macrophages. Overall, these results confirm the role of Cu and Fe in PM toxicity and suggest that the total metals content in PM might be a better indicator of pathogenicity than water-soluble metals.


Asunto(s)
Cobre/toxicidad , Hierro/toxicidad , Material Particulado/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cobre/química , Cobre/metabolismo , Hierro/química , Hierro/metabolismo , Oxidación-Reducción , Tamaño de la Partícula , Material Particulado/química , Material Particulado/metabolismo , Ratas , Propiedades de Superficie
10.
Environ Res ; 193: 110536, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253701

RESUMEN

The continuous degradation of plastic waste in the environment leads to the generation of micro- and nanoplastic fragments and particles. Due to the ubiquitous presence of plastic particles in natural habitats as well as in food, beverages and tap water, oral exposure of the human population with plastic particles occurs worldwide. We investigated acute toxicological effects of polystyrene (PS) and polyvinyl chloride (PVC) micro- and nanoparticles in an advanced in vitro triple culture model (Caco-2/HT29-MTX-E12/THP-1) mimicking the healthy and inflamed human intestine to study the effect of inflammatory processes on plastic particle toxicity. We monitored barrier integrity, cytotoxicity, cell layer integrity, DNA damage, the release of pro-inflammatory cytokines (IL-1ß, IL-6, IL-8 and TNF-α) and mucus distribution after 24 h of particle exposure. In addition, we investigated cytotoxicity, DNA damage and IL-1ß release in monocultures of the three cell lines. Amine-modified polystyrene nanoparticles (PS-NH2) served as a positive control for particle-induced toxicity. No acute effects in the investigated endpoints were observed in the model of the healthy intestine after PS or PVC exposure. However, during active inflammatory processes, exposure to PVC particles was found to augment the release of IL-1ß and to cause a loss of epithelial cells. Our results suggest that prevalent intestinal inflammation might be an important factor to consider when assessing the hazard of ingested micro- and nanoplastic particles.


Asunto(s)
Nanopartículas , Poliestirenos , Células CACO-2 , Humanos , Intestinos , Microplásticos , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Cloruro de Polivinilo/toxicidad
11.
Chem Res Toxicol ; 33(5): 1163-1178, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32383381

RESUMEN

There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.


Asunto(s)
Intestinos/efectos de los fármacos , Modelos Biológicos , Nanoestructuras/toxicidad , Animales , Humanos , Nanoestructuras/efectos adversos , Tamaño de la Partícula , Pruebas de Toxicidad
12.
BMC Pulm Med ; 20(1): 112, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349726

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal disease of which the etiology is still not fully understood. Current treatment comprises two FDA-approved drugs that can slow down yet not stop or reverse the disease. As IPF pathology is associated with an altered redox balance, adding a redox modulating component to current therapy might exert beneficial effects. Quercetin is a dietary antioxidant with strong redox modulating capacities that is suggested to exert part of its antioxidative effects via activation of the redox-sensitive transcription factor Nrf2 that regulates endogenous antioxidant levels. Therefore, the aim of the present study was to investigate if the dietary antioxidant quercetin can exert anti-fibrotic effects in a mouse model of bleomycin-induced pulmonary fibrogenesis through Nrf2-dependent restoration of redox imbalance. METHODS: Homozygous Nrf2 deficient mice and their wildtype littermates were fed a control diet without or with 800 mg quercetin per kg diet from 7 days prior to a single 1 µg/2 µl per g BW bleomycin challenge until they were sacrificed 14 days afterwards. Lung tissue and plasma were collected to determine markers of fibrosis (expression of extracellular matrix genes and histopathology), inflammation (pulmonary gene expression and plasma levels of tumor necrosis factor-α (TNFα) and keratinocyte chemoattrachtant (KC)), and redox balance (pulmonary gene expression of antioxidants and malondialdehyde-dG (MDA)- DNA adducts). RESULTS: Mice fed the enriched diet for 7 days prior to the bleomycin challenge had significantly enhanced plasma and pulmonary quercetin levels (11.08 ± 0.73 µM versus 7.05 ± 0.2 µM) combined with increased expression of Nrf2 and Nrf2-responsive genes compared to mice fed the control diet in lung tissue. Upon bleomycin treatment, quercetin-fed mice displayed reduced expression of collagen (COL1A2) and fibronectin (FN1) and a tendency of reduced inflammatory lesions (2.8 ± 0.7 versus 1.9 ± 0.8). These beneficial effects were accompanied by reduced pulmonary gene expression of TNFα and KC, but not their plasma levels, and enhanced Nrf2-induced pulmonary antioxidant defences. In Nrf2 deficient mice, no effect of the dietary antioxidant on either histology or inflammatory lesions was observed. CONCLUSION: Quercetin exerts anti-fibrogenic and anti-inflammatory effects on bleomycin-induced pulmonary damage in mice possibly through modulation of the redox balance by inducing Nrf2. However, quercetin could not rescue the bleomycin-induced pulmonary damage indicating that quercetin alone cannot ameliorate the progression of IPF.


Asunto(s)
Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Quercetina/farmacología , Animales , Bleomicina/toxicidad , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Colágeno/metabolismo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Pulmón/patología , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Fibrosis Pulmonar/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo
13.
Part Fibre Toxicol ; 16(1): 32, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31419990

RESUMEN

BACKGROUND: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. MAIN BODY: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. CONCLUSIONS: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity.


Asunto(s)
Silanos/química , Silanos/toxicidad , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Animales , Apoptosis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Química Computacional , Células Epiteliales/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Simulación de Dinámica Molecular , Propiedades de Superficie , Canales Catiónicos TRPV/metabolismo
14.
Toxicol Appl Pharmacol ; 348: 43-53, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29673857

RESUMEN

Lung epithelial cells are the first cell-type to come in contact with hazardous dust materials. Upon deposition, they invoke complex reactions in attempt to eradicate particles from the airways, and repair damage. The cell surface is composed of a heterogeneous network of matrix proteins and proteoglycans, which act as scaffold and control cell-signaling networks. These functions are controlled, in part, by the sulfation patterns of heparin-sulfate proteoglycans (HSPGs), which are enzymatically regulated. Although there is evidence of altered HSPG-sulfation in idiopathic pulmonary fibrosis (IPF), this is not investigated in silicosis. Our previous studies revealed down-regulation of Sulfatase-1 (SULF1) in human bronchial epithelial cells (BECs) by crystalline silica (CS). In this study, CS-induced down-regulation of SULF1, and increases in Sulfated-HSPGs, were determined in human BECs, and in rat lungs. By siRNA and plasmid transfection techniques the effects of SULF1 expression on silica-induced fibrogenic and proliferative gene expression were determined. These studies confirmed down-regulation of SULF1 and subsequent increases in sulfated-HSPGs in vitro. Moreover, short-term exposure of rats to CS resulted in similar changes in vivo. Conversely, effects were reversed after long term CS exposure of rats. SULF1 knockdown, and overexpression alleviated and exacerbated silica-induced decrease in cell viability, respectively. Furthermore, overexpression of SULF1 promoted silica-induced proliferative and fibrogenic gene expression, and collagen production. These findings demonstrate that the HSPG modification enzyme SULF1 and HSPG sulfation are altered by CS in vitro and in vivo. Furthermore, these changes may contribute to CS-induced lung pathogenicity by affecting injury tolerance, hyperproliferation, and fibrotic effects.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Dióxido de Silicio/toxicidad , Silicosis/etiología , Sulfotransferasas/metabolismo , Animales , Línea Celular , Colágeno/metabolismo , Cristalización , Regulación hacia Abajo , Células Epiteliales/enzimología , Células Epiteliales/patología , Femenino , Heparina/análogos & derivados , Heparina/metabolismo , Humanos , Pulmón/enzimología , Pulmón/patología , Proteoglicanos/metabolismo , Fibrosis Pulmonar/enzimología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Dióxido de Silicio/química , Silicosis/enzimología , Silicosis/genética , Silicosis/patología , Sulfotransferasas/genética , Factores de Tiempo
15.
Inhal Toxicol ; 30(7-8): 273-286, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30286672

RESUMEN

Considerable differences in pulmonary responses have been observed in animals exposed to cerium dioxide nanoparticles via inhalation. These differences in pulmonary toxicity might be explained by differences in lung deposition, species susceptibility or physicochemical characteristics of the tested cerium dioxide nanoforms (i.e. same chemical substance, different size, shape, surface area or surface chemistry). In order to distinguish the relative importance of these different influencing factors, we performed a detailed analysis of the data from several inhalation studies with different exposure durations, species and nanoforms, namely published data on NM211 and NM212 (JRC repository), NanoAmor (commercially available) and our published and unpublished data on PROM (industry provided). Data were analyzed by comparing the observed pulmonary responses at similar external and internal dose levels. Our analyses confirm that rats are more sensitive to developing pulmonary inflammation compared to mice. The observed differences in responses do not result purely from differences in the delivered and retained doses (expressed in particle mass as well as surface area). In addition, the different nanoforms assessed showed differences in toxic potency likely due to differences in their physicochemical parameters. Primary particle and aggregate/agglomerate size distributions have a substantial impact on the deposited dose and consequently on the pulmonary response. However, in our evaluation size could not fully explain the difference observed in the analyzed studies indicating that the pulmonary response also depends on other physicochemical characteristics of the particles. It remains to be determined to what extent these findings can be generalized to other poorly soluble nanomaterials.

16.
Mutagenesis ; 32(1): 105-115, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834732

RESUMEN

Due to the steeply increased use of nanomaterials (NMs) for commercial and industrial applications, toxicological assessment of their potential harmful effects is urgently needed. In this study, we compared the DNA-damaging properties and concurrent cytotoxicity of a panel of 10 engineered NMs in three different cell lines in relation to their intrinsic oxidant generating properties. The human epithelial cell lines A549, HK-2 and HepG2 were chosen to represent relevant target organs for NMs in the lung, kidney and liver. Cytotoxicity, evaluated by WST-1 assay in the treatment concentration range of 0.3-80 µg/cm2, was shown for Ag and ZnO NM in all three cell lines. Cytotoxicity was absent for all other NMs, i.e. five types of TiO2 and two types of multiwalled carbon nanotubes. DNA damage, evaluated by the alkaline comet assay, was observed with Ag and ZnO, albeit only at cytotoxic concentrations. DNA damage varied considerably with the cell line. The oxidant generating properties of the NMs, evaluated by electron spin resonance spectroscopy in cell free conditions, did not correlate with their cytotoxic or DNA-damaging properties. DNA damage by the nanosilver could be partly attributed to its surfactant-containing dispersant. The coating of a TiO2 sample with the commercial surfactant Curosurf augmented its DNA-damaging properties in A549 cells, while surface modification with serum tended to reduce damage. Our findings indicate that measurement of the intrinsic oxidant-generating capacity of NMs is a poor predictor of DNA damage and that the cytotoxic and DNA-damaging properties of NMs can vary substantially with experimental conditions. Our study also underlines the critical importance of selecting appropriate cell systems and aligned testing protocols. Selection of a cell line on the mere basis of its origin may provide only poor insight on organ-specific hazards of NMs.


Asunto(s)
Daño del ADN , Células Epiteliales/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Nanotubos de Carbono/toxicidad , Línea Celular , Supervivencia Celular , Ensayo Cometa , ADN/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Oxidantes/farmacología , Oxidantes/toxicidad
17.
Environ Res ; 158: 225-232, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28662448

RESUMEN

OBJECTIVES: Particulate air pollution is linked to adverse cardiovascular effects. The aim of the study was to investigate the effect of short-term exposure to indoor particles on blood pressure (BP). METHODS: We analyzed the association of particle emissions from indoor sources (candle burning, toasting bread, frying sausages) with BP changes in 54 healthy volunteers in a randomized cross-over controlled exposure study. Particle mass concentration (PMC), size-specific particle number concentration (PNC) and lung-deposited particle surface area concentration (PSC) were measured during the 2h exposure. Systolic and diastolic blood pressure were measured before, during, directly, 2, 4 and 24h after exposure. We performed multiple mixed linear regression analyses of different particle metrics and BP. RESULTS: BP significantly increased with increasing PMC, PSC and PNC resulting from toasting bread. For example, an increase per 10µg/m3 PM10 and PM2.5, systolic BP increased at all time points with largest changes 1h after exposure initiation of 1.5mmHg (95%-CI: 1.1; 1.9) and of 2.2mmHg (95%-CI: 1.3; 3.1), respectively. CONCLUSIONS: Our study suggests an association of short-term exposure to fine and ultrafine particles emitted from toasting bread with increases in BP. Particles emitted from frying sausages and candle burning did not consistently affect BP.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Presión Sanguínea , Exposición a Riesgos Ambientales , Material Particulado/análisis , Adulto , Anciano , Culinaria , Monitoreo del Ambiente , Europa (Continente) , Femenino , Voluntarios Sanos , Humanos , Pulmón , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Adulto Joven
18.
Part Fibre Toxicol ; 14(1): 35, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28854940

RESUMEN

BACKGROUND: Increasing evidence from toxicological and epidemiological studies indicates that the central nervous system is an important target for ambient air pollutants. We have investigated whether long-term inhalation exposure to diesel engine exhaust (DEE), a dominant contributor to particulate air pollution in urban environments, can aggravate Alzheimer's Disease (AD)-like effects in female 5X Familial AD (5XFAD) mice and their wild-type female littermates. Following 3 and 13 weeks exposures to diluted DEE (0.95 mg/m3, 6 h/day, 5 days/week) or clean air (controls) behaviour tests were performed and amyloid-ß (Aß) plaque formation, pulmonary histopathology and systemic inflammation were evaluated. RESULTS: In a string suspension task, assessing for grip strength and motor coordination, 13 weeks exposed 5XFAD mice performed significantly less than the 5XFAD controls. Spatial working memory deficits, assessed by Y-maze and X-maze tasks, were not observed in association with the DEE exposures. Brains of the 3 weeks DEE-exposed 5XFAD mice showed significantly higher cortical Aß plaque load and higher whole brain homogenate Aß42 levels than the clean air-exposed 5XFAD littermate controls. After the 13 weeks exposures, with increasing age and progression of the AD-phenotype of the 5XFAD mice, DEE-related differences in amyloid pathology were no longer present. Immunohistochemical evaluation of lungs of the mice revealed no obvious genetic background-related differences in tissue structure, and the DEE exposure did not cause histopathological changes in the mice of both backgrounds. Luminex analysis of plasma cytokines demonstrated absence of sustained systemic inflammation upon DEE exposure. CONCLUSIONS: Inhalation exposure to DEE causes accelerated plaque formation and motor function impairment in 5XFAD transgenic mice. Our study provides further support that the brain is a relevant target for the effects of inhaled DEE and suggests that long-term exposure to this ubiquitous air pollution mixture may promote the development of Alzheimer's disease.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Enfermedad de Alzheimer/patología , Exposición por Inhalación/efectos adversos , Material Particulado/toxicidad , Placa Amiloide/patología , Emisiones de Vehículos/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Exposición por Inhalación/análisis , Memoria a Corto Plazo/efectos de los fármacos , Ratones Endogámicos
19.
Artículo en Inglés | MEDLINE | ID: mdl-27030582

RESUMEN

ENPRA was one of the earlier multidisciplinary European Commission FP7-funded projects aiming to evaluate the risks associated with nanomaterial (NM) exposure on human health across pulmonary, cardiovascular, hepatic, renal, and developmental systems. The outputs from this project have formed the basis of this review. A retrospective interpretation of the findings across a wide range of in vitro and in vivo studies was performed to identify the main highlights from the project. In particular, focus was placed on informing what advances were made in the hazard assessment of NM, as well as offering some suggestions on the future of "nanotoxicology research" based on these observations, shortcomings, and lessons learned from the project. A number of issues related to the hazard assessment of NM are discussed in detail and include use of appropriate NM for nanotoxicology investigations; characterization and dispersion of NM; use of appropriate doses for all related investigations; need for the correct choice of experimental models for risk assessment purposes; and full understanding of the test systems and correct interpretation of data generated from in vitro and in vivo systems. It is hoped that this review may assist in providing information in the implementation of guidelines, model systems, validation of assessment methodology, and integrated testing approaches for risk assessment of NM. It is vital to learn from ongoing and/or completed studies to avoid unnecessary duplication and offer suggestions that might improve different aspects of experimental design.


Asunto(s)
Nanoestructuras/toxicidad , Nanotecnología/tendencias , Pruebas de Toxicidad , Toxicología/métodos , Animales , Europa (Continente) , Humanos , Técnicas In Vitro , Nanoestructuras/análisis , Medición de Riesgo , Toxicología/tendencias
20.
Environ Res ; 138: 381-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25769127

RESUMEN

Epidemiological studies indicate that asthmatic children are more susceptible to traffic-related air pollution exposure than non-asthmatic children. Local and systemic inflammation in combination with oxidative stress have been suggested as a possible susceptibility factor. We investigated effect modification by asthma status for the association between air pollution exposure and systemic effects using whole blood cytokine responsiveness as an inflammatory marker. The study was nested within the two German birth cohort studies GINIplus and LISAplus and initially designed as a random sub-sample enriched with asthmatic children. Using data from 27 asthmatic and 59 non-asthmatic six-year-old children we measured the production of Interleukin-6 (IL)-6, IL-8, IL-10, monocyte chemotactic protein-1 (MCP-1), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) in whole blood after ex-vivo stimulation with urban particulate matter (EHC-93). Air pollution exposure (nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter with an aerodynamic diameter <10µm (PM10), particulate matter with an aerodynamic diameter <2.5µm (PM2.5mass), coarse particulate matter (PMcoarse) and PM2.5absorbance (PM2.5abs)) was modelled for children´s home addresses applying land-use regression. To assess effect modification by asthma status linear regression models with multiplicative interaction terms were used. In asthmatics exposure to NO2 was associated with higher production of pro-inflammatory cytokines: adjusted means ratio (MR) 2.22 (95% confidence interval 1.22-4.04) for IL-6 per 2.68µg/m³ NO2. The interaction term between asthma status and NO2 exposure was significant. Results for NOx, PM10, PM2.5mass and PM2.5abs were in the same direction. No association between air pollution and cytokine responsiveness was found in the group of non-asthmatic children and in the overall group. Traffic-related air pollution exposure is associated with higher pro-inflammatory cytokine responsiveness in whole blood of asthmatic children.


Asunto(s)
Contaminantes Atmosféricos/sangre , Asma/epidemiología , Citocinas/metabolismo , Exposición a Riesgos Ambientales , Emisiones de Vehículos/análisis , Asma/inducido químicamente , Niño , Estudios de Cohortes , Monitoreo del Ambiente , Femenino , Citometría de Flujo , Alemania/epidemiología , Humanos , Masculino , Modelos Teóricos , Óxidos de Nitrógeno/sangre , Tamaño de la Partícula , Material Particulado/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA