RESUMEN
148 Italian children (n=148) suspected of and evaluated for COVID-19 infection during the first phase of the pandemic were followed-up for 6 months.During the follow-up period, no difference in the prevalence of new-onset respiratory, dermatological or neurological symptoms, nor in psychological distress,were observed in children who were positive and negative for SARS-CoV-2.
Asunto(s)
COVID-19 , Niño , Humanos , Pandemias , Pediatras , Atención Primaria de Salud , SARS-CoV-2RESUMEN
In beta-thalassemia, the mechanism driving ineffective erythropoiesis (IE) is insufficiently understood. We analyzed mice affected by beta-thalassemia and observed, unexpectedly, a relatively small increase in apoptosis of their erythroid cells compared with healthy mice. Therefore, we sought to determine whether IE could also be characterized by limited erythroid cell differentiation. In thalassemic mice, we observed that a greater than normal percentage of erythroid cells was in S-phase, exhibiting an erythroblast-like morphology. Thalassemic cells were associated with expression of cell cycle-promoting genes such as EpoR, Jak2, Cyclin-A, Cdk2, and Ki-67 and the antiapoptotic protein Bcl-X(L). The cells also differentiated less than normal erythroid ones in vitro. To investigate whether Jak2 could be responsible for the limited cell differentiation, we administered a Jak2 inhibitor, TG101209, to healthy and thalassemic mice. Exposure to TG101209 dramatically decreased the spleen size but also affected anemia. Although our data do not exclude a role for apoptosis in IE, we propose that expansion of the erythroid pool followed by limited cell differentiation exacerbates IE in thalassemia. In addition, these results suggest that use of Jak2 inhibitors has the potential to profoundly change the management of this disorder.
Asunto(s)
Diferenciación Celular , Células Eritroides/patología , Eritropoyesis , Janus Quinasa 2/genética , Talasemia beta/sangre , Animales , Apoptosis , Quinasas Ciclina-Dependientes/genética , Janus Quinasa 2/antagonistas & inhibidores , Ratones , Bazo/patologíaRESUMEN
BACKGROUND: Prolonged immunodeficiency after allogeneic bone marrow transplantation (allo BMT) results in significant morbidity and mortality from infection. Previous studies in murine syngeneic BMT models have demonstrated that posttransplantation insulin-like growth factor (IGF)-I administration could enhance immune reconstitution. METHODS: To analyze the effects of IGF-I on immune reconstitution and graft-versus-host disease (GVHD) after allo BMT, we used murine models for MHC-matched and -mismatched allo BMT. Young (3-month-old) recipient mice received 4 mg/kg per day of human IGF-I from days 14 to 28 by continuous subcutaneous administration. RESULTS: IGF-I administration resulted in increased thymic precursor populations (triple negative-2 and triple negative-3) as determined on day 28 but had no effect on overall thymic cellularity. In the periphery, the numbers of donor-derived splenic CD3+ T cells were increased and these cells had an improved proliferative response to mitogen stimulation. IGF-I treatment also significantly increased the numbers of pro-, pre-, and mature B cells and myeloid cell populations in the spleens of allo BMT recipients on day 28. The administration of IGF-I in combination with interleukin 7 had a remarkable additive effect on B-cell, but not on T-cell, lymphopoiesis. Finally, we tested the effects of IGF-I administration on the development of GVHD in three different MHC-matched and -mismatched models and found no changes in GVHD morbidity and mortality. CONCLUSION: IGF-I administration can enhance lymphoid and myeloid reconstitution after allo BMT without aggravating GVHD.