Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 213(Pt 22): 3852-7, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21037064

RESUMEN

Trehalase (EC 3.2.1.28) hydrolyzes the main haemolymph sugar of insects, trehalose, into the essential cellular substrate glucose. Trehalase in locust flight muscle is bound to membranes that appear in the microsomal fraction upon tissue fractionation, but the exact location in vivo has remained elusive. Trehalase has been proposed to be regulated by a novel type of activity control that is based on the reversible transformation of a latent (inactive) form into an overt (active) form. Most trehalase activity from saline-injected controls was membrane-bound (95%) and comprised an overt form (∼25%) and a latent form (75%). Latent trehalase could be assayed only after the integrity of membranes had been destroyed. Trehazolin, a potent tight-binding inhibitor of trehalase, is confined to the extracellular space and has been used as a tool to gather information on the relationship between latent and overt trehalase. Trehazolin was injected into the haemolymph of locusts, and the trehalase activity of the flight muscle was determined at different times over a 30-day period. Total trehalase activity in locust flight muscle was markedly inhibited during the first half of the interval, but reappeared during the second half. Inhibition of the overt form preceded inhibition of the latent form, and the time course suggested a reversible precursor-product relation (cycling) between the two forms. The results support the working hypothesis that trehalase functions as an ectoenzyme, the activity of which is regulated by reversible transformation of latent into overt trehalase.


Asunto(s)
Disacáridos/farmacología , Locusta migratoria/efectos de los fármacos , Locusta migratoria/enzimología , Trehalasa/antagonistas & inhibidores , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Inhibidores Enzimáticos/farmacología , Vuelo Animal/efectos de los fármacos , Vuelo Animal/fisiología , Locusta migratoria/fisiología , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Trehalasa/aislamiento & purificación , Trehalasa/metabolismo
2.
J Exp Biol ; 206(Pt 7): 1233-40, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12604583

RESUMEN

The main blood sugar of locusts is trehalose, which is hydrolysed to two glucose units by trehalase. Homogenates of locust flight muscles are rich in trehalase activity, which is bound to membranes. A minor fraction of trehalase is in an overt form while the remainder is latent, i.e. active only after impairing membrane integrity. Trehazolin, an antibiotic pseudosaccharide, inhibits locust flight muscle trehalase with apparent K(i)- and EC(50) values of 10(-8) mol l(-1) and 10(-7) mol l(-1), respectively. Trehazolin is insecticidal: 50 micro g injected into locusts completely and selectively blocked the overt form of muscle trehalase (with little effect on latent activity) and killed 50% of the insects within 24 h. Here, it is demonstrated for the first time that trehazolin causes dramatic hypoglycaemia. Injection of 10 micro g trehazolin caused glucose levels to fall by over 90% in 24 h, from 2.8 mmol l(-1) to 0.23 mmol l(-1), while trehalose increased from 61 mmol l(-1) to 111 mmol l(-1). Feeding glucose to the locusts fully neutralized the effects of a potentially lethal dose of trehazolin. This indicates that hypertrehalosaemia is not acutely toxic, whereas lack of glucose causes organ failure (presumably of the nervous system), and that sufficient haemolymph glucose can only be generated from trehalose by trehalase. The results also suggest that overt flight muscle trehalase is located in the plasma membrane with the active site accessible to the haemolymph. Trehalase inhibitors are valuable tools for studying the molecular physiology of trehalase function and sugar metabolism in insects.


Asunto(s)
Disacáridos/toxicidad , Glucosa/metabolismo , Saltamontes/efectos de los fármacos , Trehalasa/antagonistas & inhibidores , Animales , Vuelo Animal/fisiología , Saltamontes/fisiología , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA