Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Stem Cells ; 33(1): 170-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25182747

RESUMEN

The fate of neural progenitor cells (NPCs) is determined by a complex interplay of intrinsic programs and extrinsic signals, very few of which are known. ß-Catenin transduces extracellular Wnt signals, but also maintains adherens junctions integrity. Here, we identify for the first time the contribution of ß-catenin transcriptional activity as opposed to its adhesion role in the development of the cerebral cortex by combining a novel ß-catenin mutant allele with conditional inactivation approaches. Wnt/ß-catenin signaling ablation leads to premature NPC differentiation, but, in addition, to a change in progenitor cell cycle kinetics and an increase in basally dividing progenitors. Interestingly, Wnt/ß-catenin signaling affects the sequential fate switch of progenitors, leading to a shortened neurogenic period with decreased number of both deep and upper-layer neurons and later, to precocious astrogenesis. Indeed, a genome-wide analysis highlighted the premature activation of a corticogenesis differentiation program in the Wnt/ß-catenin signaling-ablated cortex. Thus, ß-catenin signaling controls the expression of a set of genes that appear to act downstream of canonical Wnt signaling to regulate the stage-specific production of appropriate progenitor numbers, neuronal subpopulations, and astroglia in the forebrain.


Asunto(s)
Corteza Cerebral/citología , Células-Madre Neurales/citología , Neuronas/citología , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Corteza Cerebral/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Transducción de Señal
2.
Front Cell Neurosci ; 8: 215, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147501

RESUMEN

During brain development, radial glial cells possess an apico-basal polarity and are coupled by adherens junctions (AJs) to an F-actin belt. To elucidate the role of the actin, we conditionally deleted the key component α-E-catenin in the developing cerebral cortex. Deletion at early stages resulted in severe disruption of tissue polarity due to uncoupling of AJs with the intracellular actin fibers leading to the formation of subcortical band heterotopia. Interestingly, this phenotype closely resembled the phenotype obtained by conditional RhoA deletion, both in regard to the macroscopic subcortical band heterotopia and the subcellular increase in G-actin/F-actin ratio. These data therefore together corroborate the role of the actin cytoskeleton and its anchoring to the AJs for neuronal migration disorders.

3.
Nat Neurosci ; 12(10): 1229-37, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19749747

RESUMEN

An important feature of the cerebral cortex is its layered organization, which is modulated in an area-specific manner. We found that the transcription factor AP2gamma regulates laminar fate in a region-specific manner. Deletion of AP2gamma (also known as Tcfap2c) during development resulted in a specific reduction of upper layer neurons in the occipital cortex, leading to impaired function and enhanced plasticity of the adult visual cortex. AP2gamma functions in apical progenitors, and its absence resulted in mis-specification of basal progenitors in the occipital cortex at the time at which upper layer neurons were generated. AP2gamma directly regulated the basal progenitor fate determinants Math3 (also known as Neurod4) and Tbr2, and its overexpression promoted the generation of layer II/III neurons in a time- and region-specific manner. Thus, AP2gamma acts as a regulator of basal progenitor fate, linking regional and laminar specification in the mouse developing cerebral cortex.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral , Células Madre Embrionarias/fisiología , Neurogénesis/fisiología , Factor de Transcripción AP-2/fisiología , Adulto , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Línea Celular Transformada , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Potenciales Evocados Visuales/genética , Potenciales Evocados Visuales/fisiología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Feto , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Antígeno Ki-67/metabolismo , Macaca fascicularis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Estimulación Luminosa/métodos , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Dominio T Box/metabolismo , Factor de Transcripción AP-2/genética , Factores de Transcripción/genética , Transfección/métodos , Proteínas Supresoras de Tumor/genética
4.
Cell Stem Cell ; 2(5): 472-83, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18462697

RESUMEN

Regulating the choice between neural stem cell maintenance versus differentiation determines growth and size of the developing brain. Here we identify TGF-beta signaling as a crucial factor controlling these processes. At early developmental stages, TGF-beta signal activity is localized close to the ventricular surface of the neuroepithelium. In the midbrain, but not in the forebrain, Tgfbr2 ablation results in ectopic expression of Wnt1/beta-catenin and FGF8, activation of Wnt target genes, and increased proliferation and horizontal expansion of neuroepithelial cells due to shortened cell-cycle length and decreased cell-cycle exit. Consistent with this phenotype, self-renewal of mutant neuroepithelial stem cells is enhanced in the presence of FGF and requires Wnt signaling. Moreover, TGF-beta signal activation counteracts Wnt-induced proliferation of midbrain neuroepithelial cells. Thus, TGF-beta signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.


Asunto(s)
Diferenciación Celular , Mesencéfalo/citología , Mesencéfalo/fisiología , Transducción de Señal , Células Madre/citología , Células Madre/fisiología , Factor de Crecimiento Transformador beta/fisiología , Proteína Wnt1/fisiología , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/fisiología , Humanos , Mesencéfalo/embriología , Ratones , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Neuronas/citología , Neuronas/fisiología , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA