Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862028

RESUMEN

Spaceflight induces molecular, cellular, and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet, current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools, and protocols. Here, we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular, and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, plus Axiom and Polaris. The SOMA resource represents a >10-fold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome data sets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation, and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific murine data sets. Leveraging the datasets, tools, and resources in SOMA can help accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation, and countermeasures data for upcoming lunar, Mars, and exploration-class missions.

2.
J Strength Cond Res ; 35(11): 3139-3144, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533486

RESUMEN

ABSTRACT: Kunces, LJ, Keenan, J, Schmidt, CM, and Schmidt, MA. Molecular deficits relevant to concussion are prevalent in top-ranked football players entering the National Football League draft. J Strength Cond Res 35(11): 3139-3144, 2021-Characterization of blood variants in athletes entering the highly competitive contact environment of professional football can help us understand the risk for brain injury. When coupled with longitudinal follow-up of future concussion incidence and trajectory, it may provide additional insight into factors that influence brain injury. We observed the metabolic phenotype of collegiate football players entering the 2016 National Football League (NFL) draft. The principal aims were to characterize the molecular status of individual athletes and quantify the prevalence of athletes with multiple concurrent molecular deficits. Blood was taken from 30 elite American collegiate football players 7 weeks before the NFL scouting combine and 15 weeks before entering the NFL draft. Average results revealed suboptimal values in Omega-3 Index (avg ± std, 4.66 ± 1.16%), arachidonic acid:eicosapentaenoic acid fatty acid ratio (29.13 ± 10.78), homocysteine (11.4 ± 3.4 µmol·L-1), vitamin D (30 ± 11.4 ng·ml-1), and red blood cell magnesium (4.1 ± 0.8 mg·dl-1). Using sport-optimized reference ranges from previously published research, 10% presented with 3, 40% presented with 4, and 50% of athletes presented with 5 suboptimal values at once. We conclude molecular deficits in this cohort entering the NFL draft were common, with a significant number of athletes presenting with multiple suboptimal levels. The significant commonality of the suboptimal biomarkers is relevance to brain health and function. This data warrant extensive metabolic phenotyping and consideration of prophylactic precision nutrition countermeasures by the multidisciplinary staff for athletes entering contact environments.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Fútbol , Atletas , Conmoción Encefálica/epidemiología , Estudios de Cohortes , Fútbol Americano/lesiones , Humanos
3.
Nat Commun ; 15(1): 4964, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862509

RESUMEN

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.


Asunto(s)
Bancos de Muestras Biológicas , Vuelo Espacial , Manejo de Especímenes , Humanos , Manejo de Especímenes/métodos , Astronautas
4.
Precis Clin Med ; 7(1): pbae007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38634106

RESUMEN

Background: The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure. Methods: To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden. Result: Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight. Conclusion: Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.

5.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862516

RESUMEN

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Asunto(s)
Análisis de la Célula Individual , Vuelo Espacial , Transcriptoma , Animales , Femenino , Masculino , Humanos , Ratones , Astronautas , Citocinas/metabolismo , Linfocitos T/inmunología , Factores Sexuales , Perfilación de la Expresión Génica , Fosforilación Oxidativa
6.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205403

RESUMEN

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.

7.
mSystems ; 6(5): e0076821, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34609169

RESUMEN

In this Commentary, we will discuss some of the current trends and challenges in modeling microbiome metabolism. A focus will be the state of the art in the integration of metabolic networks, ecological and evolutionary principles, and spatiotemporal considerations, followed by envisioning integrated frameworks incorporating different principles and data to generate predictive models in the future.

8.
Lifestyle Genom ; 13(3): 107-121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32375154

RESUMEN

BACKGROUND: At present, there is no clear understanding of the effect of long-duration spaceflight on the major enzymes that govern the metabolism of omega-6 and omega-3 fatty acids. To address this gap in knowledge, we used data from the NASA Twins Study, which includes a multiscale omics investigation of the changes that occurred during a year-long (340 days) human spaceflight. Embedded within the NASA Twins data are specific analytes associated with fatty acid metabolism. OBJECTIVES: To examine the long-chain fatty acid desaturases and elongases in a single human during 1 year in space. METHOD: One male twin was on board the International Space Station (ISS) for 1 year, while his monozygotic twin served as a genetically matched ground control. Longitudinal assessments included the genome, epige-nome, transcriptome, proteome, metabolome, microbiome, and immunome during the mission, as well as 6 months before and after. The gene-specific fatty acid desaturase and elongase transcriptome data (FADS1, FADS2, ELOVL2, and ELOVL5) were extracted from untargeted RNA-seq measurements derived from white blood cell fractions. RESULTS: Most data from the elongases and desaturases exhibited relatively similar expression profiles (R2 >0.6) over time for the CD8, CD19, and lymphocyte-depleted (LD) cell fractions, indicating overall conservation of function within and between the subjects. Both cell-type and temporal specificity was observed in some cases, and some differences were also apparent between the polyadenylated (polyA) fraction of processed RNAs versus the ribodepleted (ribo-) fraction. The flight subject showed a stronger enrichment of the fatty acid metabolic process pathway across almost all cell types (columns, CD4, CD8, CPT, and LD), most especially in the ribodepleted fraction of RNA, but also with the polyA+ fraction of RNA. Gene set enrichment analysis (GSEA) measures across three related fatty acid metabolism pathways showed a differential between the ground and the flight subject. CONCLUSIONS: There appears to be no persistent alteration of desaturase and elongase gene expression associated with 1 year in space. However, these data provide evidence that cellular lipid metabolism can be responsive and dynamic to spaceflight, even though it appears cell-type and context specific, most notably in terms of the fraction of RNA measured and the collection protocols. These results also provide new evidence of mid-flight spikes in expression of selected genes, which may indicate transient responses to specific insults during spaceflight.


Asunto(s)
Ácido Graso Desaturasas/biosíntesis , Elongasas de Ácidos Grasos/biosíntesis , Vuelo Espacial , Linfocitos T CD8-positivos/citología , delta-5 Desaturasa de Ácido Graso , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Variación Genética , Humanos , Metabolismo de los Lípidos , Linfocitos/citología , Masculino , Persona de Mediana Edad , Poliadenilación , Estados Unidos , United States National Aeronautics and Space Administration
9.
Sci Rep ; 8(1): 16995, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451889

RESUMEN

The large C2H2-Zinc Finger (C2H2-ZNF) gene family has rapidly expanded in primates through gene duplication. There is consequently considerable sequence homology between family members at both the nucleotide and amino acid level, allowing for coordinated regulation and shared functions. Here we show that multiple C2H2-ZNF mRNAs experience differential polyadenylation resulting in populations with short and long poly(A) tails. Furthermore, a significant proportion of C2H2-ZNF mRNAs are retained in the nucleus. Intriguingly, both short poly(A) tails and nuclear retention can be specified by the repeated elements that encode zinc finger motifs. These Zinc finger Coding Regions (ZCRs) appear to restrict polyadenylation of nascent RNAs and at the same time impede their export. However, the polyadenylation process is not necessary for nuclear retention of ZNF mRNAs. We propose that inefficient polyadenylation and export may allow C2H2-ZNF mRNAs to moonlight as non-coding RNAs or to be stored for later use.


Asunto(s)
Transporte Activo de Núcleo Celular , Dedos de Zinc CYS2-HIS2 , Núcleo Celular/metabolismo , Poliadenilación , Transporte de ARN , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Núcleo Celular/genética , Humanos , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA