Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 57-66, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28964848

RESUMEN

The proteoglycan nerve/glial antigen (NG) 2 is expressed on multiple cell types and mediates cell proliferation and migration. However, little is known about its function in gene regulation. In this study, we demonstrate that in pericytes and glioblastoma cells intercellular adhesion molecule (ICAM)-1, an essential protein for leukocyte adhesion and transmigration, underlies a NG2-dependent expression. As shown by flow cytometry, Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), silencing of NG2 in human placenta-derived pericytes increased the expression of ICAM-1. Pathway analyses revealed that this is mediated by extracellular-regulated-kinases (ERK) 1/2 signaling. Moreover, leukocyte adhesion to NG2 siRNA-treated pericytes was significantly enhanced when compared to scrambled (scr) siRNA-treated control cells. In vivo, we detected increased ICAM-1 protein levels in the retina of mice lacking NG2 expression. To exclude that this novel mechanism is pericyte-specific, we additionally analyzed the expression of ICAM-1 in dependency of NG2 in two glioblastoma cell lines. We found that A1207 and M059K cells exhibit an inverse expression pattern of NG2 and ICAM-1. Finally, downregulation of NG2 in A1207 cells significantly increased ICAM-1 expression. Taken together, these findings indicate that NG2 may represent a promising target for the modulation of ICAM-1-mediated immune responses.


Asunto(s)
Antígenos/fisiología , Molécula 1 de Adhesión Intercelular/genética , Proteoglicanos/fisiología , Animales , Antígenos/genética , Células Cultivadas , Regulación de la Expresión Génica , Células HEK293 , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteoglicanos/genética , Transducción de Señal/genética
2.
Cell Tissue Res ; 378(2): 195-205, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31131431

RESUMEN

Pancreatic islets are highly vascularized endocrine units. Accordingly, their adequate revascularization is of major importance for successful islet transplantation. The proteoglycan, nerve/glial antigen 2 (NG2) expressed in pericytes is a crucial regulator of angiogenesis. Therefore, we herein analyze whether this surface protein contributes to the revascularization of grafted islets. Islets were isolated from NG2+/+ (wild-type) and NG2-/- mice and their cellular composition was analyzed by immunohistochemical detection of insulin, glucagon, somatostatin and CD31. Moreover, insulin secretion was assessed by enzyme-linked immunosorbent assay (ELISA). In addition, isolated islets were transplanted into dorsal skinfold chambers of wild-type mice and their revascularization was determined by intravital fluorescence microscopy and immunohistochemistry. NG2+/+ and NG2-/- islets did not differ in their cellular composition and insulin secretion. However, transplanted NG2-/- islets exhibited a significantly lower functional capillary density and a reduced number of CD31-positive microvessels. These findings demonstrate that the loss of NG2 impairs the revascularization of transplanted islets, underlining the importance of this pericytic proteoglycan for islet engraftment.


Asunto(s)
Antígenos/fisiología , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Neovascularización Fisiológica/fisiología , Pericitos/metabolismo , Proteoglicanos/fisiología , Animales , Insulina/metabolismo , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Pericitos/citología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
3.
Platelets ; 30(4): 421-427, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30204035

RESUMEN

Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.


Asunto(s)
Quinasa de la Caseína II/efectos adversos , Células Endoteliales/metabolismo , Leucocitos/metabolismo , Trombosis/genética , Humanos , Trombosis/patología
4.
J Surg Res ; 215: 34-46, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28688659

RESUMEN

BACKGROUND: Ischemia-reperfusion (I/R) induces tissue inflammation, which is characterized by an increased leukocyte-endothelial cell interaction and leukocyte transmigration. These processes are mediated by the activation of the nuclear factor (NF)κB signaling pathway, resulting in an elevated expression of specific adhesion molecules. The phytochemical indole-3-carbinol (I3C) has been shown to exert anti-inflammatory effects by interfering with NFκB signal transduction. The aim of the present study was to investigate whether I3C is capable of counteracting the pathogenesis of I/R injury. MATERIALS AND METHODS: We investigated the inhibitory effect of I3C on endothelial surface protein expression during hypoxia and reoxygenation by flow cytometry. Moreover, the subcellular localization of NFκB was analyzed by immunofluorescence and Western blot. Adhesion protein levels on leukocytes after tumor necrosis factor-α stimulation were determined using flow cytometry. Finally, leukocyte-endothelial cell interaction and leukocyte transmigration during I/R was investigated in dorsal skinfold chambers of BALB/c mice by means of repetitive intravital fluorescence microscopy and immunohistochemistry. RESULTS: I3C suppressed the expression of E-selectin and intercellular adhesion molecule-1 on human dermal microvascular endothelial cells by reducing the transcriptional activity of NFκB. Furthermore, surface protein levels of macrophage-1 antigen as well as activated lymphocyte function-associated antigen-1 were markedly reduced on I3C-treated leukocytes. In vivo, I3C treatment decreased the numbers of adherent and transmigrated leukocytes. This was associated with a reduced macromolecular leakage when compared with vehicle-treated controls. CONCLUSIONS: These novel results indicate that I3C reduces the expression of endothelial and leukocytic adhesion proteins, resulting in attenuated leukocyte-endothelial cell interactions during I/R. Accordingly, dietary supplements containing I3C may be beneficial for the treatment of I/R-induced inflammation.


Asunto(s)
Indoles/uso terapéutico , Inflamación/prevención & control , Sustancias Protectoras/uso terapéutico , Daño por Reperfusión/prevención & control , Animales , Biomarcadores/metabolismo , Western Blotting , Selectina E/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Indoles/farmacología , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Sustancias Protectoras/farmacología , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo
5.
Cell Mol Biol Lett ; 22: 4, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536635

RESUMEN

Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types.


Asunto(s)
Antígenos/genética , Regulación de la Expresión Génica , Proteoglicanos/genética , Animales , Humanos , Hipoxia , Inflamación , Neoplasias/metabolismo , Neuroglía/metabolismo
6.
Diabetes ; 71(8): 1706-1720, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35622000

RESUMEN

Hypoxia-induced islet cell death, caused by an insufficient revascularization of the grafts, is a major obstacle for successful pancreatic islet transplantation. Recently, it has been reported that the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is expressed in pancreatic islets and that its loss protects against hypoxia-induced cell death. Therefore, we hypothesized that the inhibition of NLRP3 in islets improves the survival and endocrine function of the grafts. The transplantation of Nlrp3-/- islets or wild-type (WT) islets exposed to the NLRP3 inhibitor CY-09 into mouse dorsal skinfold chambers resulted in an improved revascularization compared with controls. An increased insulin release after NLRP3 inhibition caused the enhanced angiogenic response. Moreover, the inhibition of NLRP3 in hypoxic ß-cells triggered insulin gene expression by inducing the shuttling of MafA and pancreatic and duodenal homeobox-1 into the nucleus. This was mediated by a reduced interaction of NLRP3 with the thioredoxin-interacting protein (TXNIP). Transplantation of Nlrp3-/- islets or WT islets exposed to CY-09 under the kidney capsule of diabetic mice markedly improved the restoration of normoglycemia. These findings indicate that the inhibition of NLRP3 in isolated islets represents a promising therapeutic strategy to improve engraftment and function of the islets.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Diabetes Mellitus Experimental/metabolismo , Hipoxia/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
7.
Cancers (Basel) ; 13(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918235

RESUMEN

Nerve/glial antigen (NG)2 expression crucially determines the aggressiveness of glioblastoma multiforme (GBM). Recent evidence suggests that protein kinase CK2 regulates NG2 expression. Therefore, we investigated in the present study whether CK2 inhibition suppresses proliferation and migration of NG2-positive GBM cells. For this purpose, CK2 activity was suppressed in the NG2-positive cell lines A1207 and U87 by the pharmacological inhibitor CX-4945 and CRISPR/Cas9-mediated knockout of CK2α. As shown by quantitative real-time PCR, luciferase-reporter assays, flow cytometry and western blot, this significantly reduced NG2 gene and protein expression when compared to vehicle-treated and wild type controls. In addition, CK2 inhibition markedly reduced NG2-dependent A1207 and U87 cell proliferation and migration. The Cancer Genome Atlas (TCGA)-based data further revealed not only a high expression of both NG2 and CK2 in GBM but also a positive correlation between the mRNA expression of the two proteins. Finally, we verified a decreased NG2 expression after CX-4945 treatment in patient-derived GBM cells. These findings indicate that the inhibition of CK2 represents a promising approach to suppress the aggressive molecular signature of NG2-positive GBM cells. Therefore, CX-4945 may be a suitable drug for the future treatment of NG2-positive GBM.

8.
EMBO Mol Med ; 13(1): e12616, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33135383

RESUMEN

Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the ß-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Células Endoteliales , Insulina , Ratones
9.
Cells ; 9(6)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630438

RESUMEN

Protein kinase CK2 is a crucial regulator of endothelial cell proliferation, migration and sprouting during angiogenesis. However, it is still unknown whether this kinase additionally affects the angiogenic activity of other vessel-associated cells. In this study, we investigated the effect of CK2 inhibition on primary human pericytes. We found that CK2 inhibition reduces the expression of nerve/glial antigen (NG)2, a crucial factor which is involved in angiogenic processes. Reporter gene assays revealed a 114 bp transcriptional active region of the human NG2 promoter, whose activity was decreased after CK2 inhibition. Functional analyses demonstrated that the pharmacological inhibition of CK2 by CX-4945 suppresses pericyte proliferation, migration, spheroid sprouting and the stabilization of endothelial tubes. Moreover, aortic rings of NG2-/- mice showed a significantly reduced vascular sprouting when compared to rings of NG2+/+ mice, indicating that NG2 is an important regulator of the angiogenic activity of pericytes. In vivo, implanted Matrigel plugs containing CX-4945-treated pericytes exhibited a lower microvessel density when compared to controls. These findings demonstrate that CK2 regulates the angiogenic activity of pericytes through NG2 gene expression. Hence, the inhibition of CK2 represents a promising anti-angiogenic strategy, because it does not only target endothelial cells, but also vessel-associated pericytes.


Asunto(s)
Antígenos/metabolismo , Quinasa de la Caseína II/metabolismo , Neovascularización Patológica/genética , Pericitos/metabolismo , Proteoglicanos/metabolismo , Animales , Proliferación Celular , Humanos , Ratones , Transfección
10.
Mini Rev Med Chem ; 18(11): 962-968, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29532757

RESUMEN

The pharmacological targeting of microcirculatory dysregulations is a therapeutic strategy for the treatment of numerous pathological conditions, such as cancer, thrombosis and inflammation. A promising candidate for this purpose is indole-3-carbinol (I3C), a phytochemical compound of cruciferous vegetables, and its main derivate 3,3,'-diindolylmethane (DIM). As summarized in this review, I3C and DIM affect multiple molecular and cellular processes within the microcirculation due to their pleiotropic action profile. These include angiogenesis, leukocyte-endothelial cell interaction, cytokine and reactive oxygen species (ROS) production, thrombus formation and microvascular leakage. Hence, I3C may serve as a lead compound for the future chemical synthesis of novel drugs that exert comparable beneficial effects while exhibiting an improved bioavailability.


Asunto(s)
Indoles/farmacología , Inflamación/tratamiento farmacológico , Microcirculación/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Animales , Humanos , Indoles/química , Inflamación/patología , Neovascularización Patológica/patología , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA