Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(26): 17801-17816, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887845

RESUMEN

Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.


Asunto(s)
Química Clic , Gangliósidos , Gangliósidos/química , Gangliósidos/metabolismo , Humanos , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/síntesis química , Sondas Moleculares/química , Sondas Moleculares/síntesis química , Membrana Celular/metabolismo , Membrana Celular/química
2.
EMBO J ; 39(6): e102214, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32030804

RESUMEN

Spinal cord microglia contribute to nerve injury-induced neuropathic pain. We have previously demonstrated that toll-like receptor 2 (TLR2) signaling is critical for nerve injury-induced activation of spinal cord microglia, but the responsible endogenous TLR2 agonist has not been identified. Here, we show that nerve injury-induced upregulation of sialyltransferase St3gal2 in sensory neurons leads to an increase in expression of the sialylated glycosphingolipid, GT1b. GT1b ganglioside is axonally transported to the spinal cord dorsal horn and contributes to characteristics of neuropathic pain such as mechanical and thermal hypersensitivity. Spinal cord GT1b functions as an TLR2 agonist and induces proinflammatory microglia activation and central sensitization. Pharmacological inhibition of GT1b synthesis attenuates nerve injury-induced spinal cord microglia activation and pain hypersensitivity. Thus, the St3gal2-GT1b-TLR2 axis may offer a novel therapeutic target for the treatment of neuropathic pain.


Asunto(s)
Gangliósidos/metabolismo , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/terapia , Transducción de Señal , Receptor Toll-Like 2/agonistas , Animales , Gangliósidos/antagonistas & inhibidores , Regulación de la Expresión Génica , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuralgia/etiología , Traumatismos de los Nervios Periféricos/etiología , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Médula Espinal/metabolismo , Receptor Toll-Like 2/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893239

RESUMEN

Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6-O-sulfo)Galß1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.


Asunto(s)
Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Análisis de Matrices Tisulares/métodos , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Mucina-1 , Polisacáridos/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
4.
J Biol Chem ; 298(6): 101960, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452678

RESUMEN

Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.


Asunto(s)
Enfermedad de Alzheimer , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Sulfato de Queratano/metabolismo , Ligandos , Ratones , Microglía/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo
5.
Glycoconj J ; 40(2): 159-167, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36701102

RESUMEN

The structure of a sialoglycan can be translated into to a biological response when it binds to a specific endogenous lectin. Among endogenous sialic acid-binding lectins in humans are those comprising the 15-member Siglec family, most of which are expressed on overlapping sets of immune cells. Endogenous Siglec ligands are sialoglycolipids (gangliosides) and/or sialoglycoproteins, on cell surfaces or in the extracellular milieu, that bind to and initiate signaling by cell surface Siglecs. In the nervous system, where gangliosides are the predominant sialoglycans, Siglec-4 (myelin-associated glycoprotein) on myelinating cells binds to gangliosides GD1a and GT1b on nerve cell axons to ensure stable and productive axon-myelin interactions. In the immune system, Siglec-7 on natural killer cells binds to gangliosides GD3 and GD2 to inhibit immune signaling. Expression of GD3 and GD2 on cancer cells can lead to tumor immune evasion. Siglec-1 (sialoadhesin, CD169) on macrophages binds to gangliosides on tumors and enveloped viruses. This may enhance antigen presentation in some cases, or increase viral distribution in others. Several other Siglecs bind to gangliosides in vitro, the biological significance of which has yet to be fully established. Gangliosides, which are found on all human cells and tissues in cell-specific distributions, are functional Siglec ligands with varied roles driving Siglec-mediated signaling.


Asunto(s)
Gangliósidos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Humanos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Ligandos , Gangliósidos/metabolismo , Neuronas/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139047

RESUMEN

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Asunto(s)
Calcio , Neocórtex , Sialiltransferasas , beta-Galactosida alfa-2,3-Sialiltransferasa , Animales , Ratones , Calbindina 2/metabolismo , Calbindinas/metabolismo , Calcio/metabolismo , Gangliósidos/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Mamíferos/metabolismo , Ratones Noqueados , Mutación , Neocórtex/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , beta-Galactosida alfa-2,3-Sialiltransferasa/genética , beta-Galactosida alfa-2,3-Sialiltransferasa/metabolismo
7.
J Allergy Clin Immunol ; 147(4): 1442-1452, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32791164

RESUMEN

BACKGROUND: The immunoinhibitory receptor Siglec-8 on the surface of human eosinophils and mast cells binds to sialic acid-containing ligands in the local milieu, resulting in eosinophil apoptosis, inhibition of mast cell degranulation, and suppression of inflammation. Siglec-8 ligands were found on postmortem human trachea and bronchi and on upper airways in 2 compartments, cartilage and submucosal glands, but they were surprisingly absent from the epithelium. We hypothesized that Siglec-8 ligands in submucosal glands and ducts are normally transported to the airway mucus layer, which is lost during tissue preparation. OBJECTIVE: Our aim was to identify the major Siglec-8 sialoglycan ligand on the mucus layer of human airways. METHODS: Human upper airway mucus layer proteins were recovered during presurgical nasal lavage of patients at a sinus clinic. Proteins were resolved by gel electrophoresis and blotted, and Siglec-8 ligands detected. Ligands were purified by size exclusion and affinity chromatography, identified by proteomic mass spectrometry, and validated by electrophoretic and histochemical colocalization. The affinity of Siglec-8 binding to purified human airway ligand was determined by inhibition of glycan binding. RESULTS: A Siglec-8-ligand with a molecular weight of approximately 1000 kDa was found in all patient nasal lavage samples. Purification and identification revealed deleted in malignant brain tumors 1 (DMBT1) (also known by the aliases GP340 and SALSA), a large glycoprotein with multiple O-glycosylation repeats. Immunoblotting, immunohistochemistry, and enzyme treatments confirmed that Siglec-8 ligand on the human airway mucus layer is an isoform of DMBT1 carrying O-linked sialylated keratan sulfate chains (DMBT1S8). Quantitative inhibition revealed that DMBT1S8 has picomolar affinity for Siglec-8. CONCLUSION: A distinct DMBT1 isoform, DMBT1S8, is the major high-avidity ligand for Siglec-8 on human airways.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos B/inmunología , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al ADN/inmunología , Lectinas/inmunología , Proteínas Supresoras de Tumor/inmunología , Bronquios/inmunología , Proteínas de Unión al Calcio/química , Proteínas de Unión al ADN/química , Eosinófilos/inmunología , Humanos , Ligandos , Mastocitos/inmunología , Líquido del Lavado Nasal/inmunología , Proteoglicanos/inmunología , Tráquea/inmunología , Proteínas Supresoras de Tumor/química
8.
Glycobiology ; 31(8): 1026-1036, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-33755113

RESUMEN

Siglec-8, an immune-inhibitory sialoglycan binding lectin (S8), is expressed on the surface of eosinophils and mast cells, which are potent mediators of allergic inflammation. When S8 engages endogenous sialoglycan ligands, eosinophils undergo apoptosis and mast cell mediator release is inhibited. In the human airway, Siglec-8 ligands (S8L) are sialylated keratan sulfate chains carried on isoforms of the protein Deleted in Malignant Brain Tumors-1 (DMBT1), an immunoregulatory protein that we recently identified as the endogenous ligand for S8, DMBT1S8. We herein report that S8L is overexpressed in chronic rhinosinusitis with nasal polyposis (CRSwNP), a prevalent eosinophilic laden airway disease. Quantification and comparison of the degree to which DMBT1 carries the S8L by immunoblot analysis and lectin blot overlay, respectively, from nasal lavage showed that the S8L/DMBT1 ratio was significantly increased in CRSwNP vs. control or CRS patients. We identified the histological sites of S8L and DMBT1 expression in fresh surgically resected human nasal polyps. Histochemistry of diseased polyps and adjacent nondiseased middle turbinate (MT) tissue from CRSwNP demonstrated colocalization of S8L and DMBT1 with highest staining in submucosal glands >> epithelium > stoma. S8L expression was specifically elevated in the submucosal glands and epithelium of polyp tissue compared to MT. We hypothesize that expression of the isoform of DMBT1 carrying the Siglec-8 binding sialoglycan, DMBT1S8, is induced in polyps of CRSwNP specifically at the site of disease, is produced in the submucosal glands of polyps and secreted into the lumen of the sinonasal cavity as a host response to mitigate eosinophil-mediated inflammation.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Lectinas/metabolismo , Pólipos Nasales , Rinitis , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN , Eosinófilos/metabolismo , Humanos , Ligandos , Pólipos Nasales/metabolismo , Pólipos Nasales/patología , Receptores de Muerte Celular/metabolismo , Rinitis/metabolismo , Rinitis/patología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Proteínas Supresoras de Tumor/metabolismo
9.
Physiol Rev ; 94(2): 461-518, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24692354

RESUMEN

Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.


Asunto(s)
Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Gangliósidos/metabolismo , Trastornos Mentales/metabolismo , Regeneración Nerviosa , Neuronas/metabolismo , Ácidos Siálicos/metabolismo , Transducción de Señal , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Enfermedades del Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/fisiopatología , Humanos , Trastornos Mentales/patología , Trastornos Mentales/fisiopatología , Neuronas/patología
10.
J Neurochem ; 158(3): 657-672, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34081780

RESUMEN

Lipid rafts, membrane microdomains enriched with (glyco)sphingolipids, cholesterol, and select proteins, act as cellular signalosomes. Various methods have been used to separate lipid rafts from bulk (non-raft) membranes, but most often, non-ionic detergent Triton X-100 has been used in their isolation. However, Triton X-100 is a reported disruptor of lipid rafts. Histological evidence confirmed raft disruption by Triton X-100, but remarkably revealed raft stability to treatment with a related polyethylene oxide detergent, Brij O20. We report isolation of detergent-resistant membranes from mouse brain using Brij O20 and its use to determine the distribution of major mammalian brain gangliosides, GM1, GD1a, GD1b and GT1b. A different distribution of gangliosides-classically used as a raft marker-was discovered using Brij O20 versus Triton X-100. Immunohistochemistry and imaging mass spectrometry confirm the results. Use of Brij O20 results in a distinctive membrane distribution of gangliosides that is not all lipid raft associated, but depends on the ganglioside structure. This is the first report of a significant proportion of gangliosides outside raft domains. We also determined the distribution of proteins functionally related to neuroplasticity and known to be affected by ganglioside environment, glutamate receptor subunit 2, amyloid precursor protein and neuroplastin and report the lipid raft populations of these proteins in mouse brain tissue. This work will enable more accurate lipid raft analysis with respect to glycosphingolipid and membrane protein composition and lead to improved resolution of lipid-protein interactions within biological membranes.


Asunto(s)
Gangliósidos/análisis , Gangliósidos/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Animales , Colesterol/análisis , Colesterol/metabolismo , Femenino , Masculino , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Esfingolípidos/análisis , Esfingolípidos/metabolismo
11.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948386

RESUMEN

The recent identification of plasma membrane (Ca2+)-ATPase (PMCA)-Neuroplastin (Np) complexes has renewed attention on cell regulation of cytosolic calcium extrusion, which is of particular relevance in neurons. Here, we tested the hypothesis that PMCA-Neuroplastin complexes exist in specific ganglioside-containing rafts, which could affect calcium homeostasis. We analyzed the abundance of all four PMCA paralogs (PMCA1-4) and Neuroplastin isoforms (Np65 and Np55) in lipid rafts and bulk membrane fractions from GM2/GD2 synthase-deficient mouse brains. In these fractions, we found altered distribution of Np65/Np55 and selected PMCA isoforms, namely PMCA1 and 2. Cell surface staining and confocal microscopy identified GM1 as the main complex ganglioside co-localizing with Neuroplastin in cultured hippocampal neurons. Furthermore, blocking GM1 with a specific antibody resulted in delayed calcium restoration of electrically evoked calcium transients in the soma of hippocampal neurons. The content and composition of all ganglioside species were unchanged in Neuroplastin-deficient mouse brains. Therefore, we conclude that altered composition or disorganization of ganglioside-containing rafts results in changed regulation of calcium signals in neurons. We propose that GM1 could be a key sphingolipid for ensuring proper location of the PMCA-Neuroplastin complexes into rafts in order to participate in the regulation of neuronal calcium homeostasis.


Asunto(s)
Gangliósido G(M1)/metabolismo , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Gangliósido G(M1)/análisis , Masculino , Glicoproteínas de Membrana/análisis , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/análisis
12.
Cell Microbiol ; 21(3): e12976, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30427108

RESUMEN

Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated. An increase in membrane lateral organisation, which is a characteristic of lipid microdomains, was observed during the first steps of Hc-macrophage interaction. Cholesterol enrichment in macrophage membranes around Hc contact regions and reduced levels of Hc-macrophage association after cholesterol removal also suggested the participation of lipid microdomains during Hc-macrophage interaction. Using optical tweezers to study cell-to-cell interactions, we showed that cholesterol depletion increased the time required for Hc adhesion. Additionally, fungal internalisation was significantly reduced under these conditions. Moreover, macrophages treated with the ceramide-glucosyltransferase inhibitor (P4r) and macrophages with altered ganglioside synthesis (from B4galnt1-/- mice) showed a deficient ability to interact with Hc. Coincubation of oligo-GM1 and treatment with Cholera toxin Subunit B, which recognises the ganglioside GM1, also reduced Hc association. Although purified GM1 did not alter Hc binding, treatment with P4 significantly increased the time required for Hc binding to macrophages. The content of CD18 was displaced from lipid microdomains in B4galnt1-/- macrophages. In addition, macrophages with reduced CD18 expression (CD18low ) were associated with Hc at levels similar to wild-type cells. Finally, CD11b and CD18 colocalised with GM1 during Hc-macrophage interaction. Our results indicate that lipid rafts and particularly complex gangliosides that reside in lipid rafts stabilise Hc-macrophage adhesion and mediate efficient internalisation during histoplasmosis.


Asunto(s)
Adhesión Celular , Endocitosis , Histoplasma/inmunología , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/microbiología , Microdominios de Membrana/metabolismo , Animales , Línea Celular , Ratones Endogámicos C57BL , Ratones Noqueados
13.
J Am Chem Soc ; 141(36): 14032-14037, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31460762

RESUMEN

The Siglec family of cell surface receptors have emerged as attractive targets for cell-directed therapies due to their restricted expression on immune cells, endocytic properties, and ability to modulate receptor signaling. Human Siglec-8, for instance, has been identified as a therapeutic target for the treatment of eosinophil and mast cell disorders. A promising strategy to target Siglecs involves the use of liposomal nanoparticles with a multivalent display of Siglec ligands. A key challenge for this approach is the identification of a high affinity ligand for the target Siglec. Here, we report the development of a ligand of Siglec-8 and its closest murine functional orthologue Siglec-F that is capable of targeting liposomes to cells expressing Siglec-8 or -F. A glycan microarray library of synthetic 9-N-sulfonyl sialoside analogues was screened to identify potential lead compounds. The best ligand, 9-N-(2-naphthyl-sulfonyl)-Neu5Acα2-3-[6-O-sulfo]-Galß1-4GlcNAc (6'-O-sulfo NSANeu5Ac) combined the lead 2-naphthyl sulfonyl C-9 substituent with the preferred sulfated scaffold. The ligand 6'-O-sulfo NSANeu5Ac was conjugated to lipids for display on liposomes to evaluate targeted delivery to cells. Targeted liposomes showed strong in vitro binding/uptake and selectivity to cells expressing Siglec-8 or -F and, when administered to mice, exhibit in vivo targeting to Siglec-F+ eosinophils.


Asunto(s)
Antígenos de Diferenciación Mielomonocítica/metabolismo , Linfocitos B/efectos de los fármacos , Lectinas/antagonistas & inhibidores , Ácidos Siálicos/farmacología , Sulfonamidas/farmacología , Linfocitos T/efectos de los fármacos , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Células CHO , Cricetulus , Humanos , Lectinas/metabolismo , Liposomas/química , Liposomas/metabolismo , Ratones , Conformación Molecular , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Ácidos Siálicos/química , Sulfonamidas/química , Linfocitos T/metabolismo
14.
J Biol Chem ; 292(7): 2557-2570, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049733

RESUMEN

All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens.


Asunto(s)
Evolución Biológica , Encéfalo/metabolismo , Ácidos Neuramínicos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Endotelio Vascular/metabolismo , Locomoción , Espectrometría de Masas , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos
15.
Glycobiology ; 28(10): 786-801, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29924315

RESUMEN

Human siglecs are a family of 14 sialic acid-binding proteins, most of which are expressed on subsets of immune cells where they regulate immune responses. Siglec-8 is expressed selectively on human allergic inflammatory cells-primarily eosinophils and mast cells-where engagement causes eosinophil apoptosis and inhibits mast cell mediator release. Evidence supports a model in which human eosinophils and mast cells bind to Siglec-8 sialoglycan ligands on inflammatory target tissues to resolve allergic inflammation and limit tissue damage. To identify Siglec-8-binding sialoglycans from human airways, proteins extracted from postmortem human trachea were resolved by size-exclusion chromatography and composite agarose-acrylamide gel electrophoresis, blotted and probed by Siglec-8-Fc blot overlay. Three size classes of Siglec-8 ligands were identified: 250 kDa, 600 kDa and 1 MDa, each of which was purified by affinity chromatography using a recombinant pentameric form of Siglec-8. Proteomic mass spectrometry identified all size classes as the proteoglycan aggrecan, a finding validated by immunoblotting. Glycan array studies demonstrated Siglec-8 binding to synthetic glycans with a terminal Neu5Acα2-3(6-sulfo)-Gal determinant, a quantitatively minor terminus on keratan sulfate (KS) chains of aggrecan. Treating human tracheal extracts with sialidase or keratanase eliminated Siglec-8 binding, indicating sialylated KS chains as Siglec-8-binding determinants. Treating human tracheal histological sections with keratanase also completely eliminated the binding of Siglec-8-Fc. Finally, Siglec-8 ligand purified from human trachea extracts induced increased apoptosis of freshly isolated human eosinophils in vitro. We conclude that sialylated KS proteoglycans are endogenous human airway ligands that bind Siglec-8 and may regulate allergic inflammation.


Asunto(s)
Antígenos CD/química , Antígenos de Diferenciación de Linfocitos B/química , Sulfato de Queratano/química , Lectinas/química , Proteoglicanos/química , Ácidos Siálicos/química , Tráquea/química , Antígenos CD/aislamiento & purificación , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/aislamiento & purificación , Antígenos de Diferenciación de Linfocitos B/metabolismo , Apoptosis/efectos de los fármacos , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Sulfato de Queratano/metabolismo , Sulfato de Queratano/farmacología , Lectinas/aislamiento & purificación , Lectinas/metabolismo , Ligandos , Masculino , Persona de Mediana Edad , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacología , Tráquea/metabolismo
16.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577572

RESUMEN

Sialic acid-binding Ig-like lectin 8 (Siglec-8) is expressed on the surface of human eosinophils, mast cells, and basophils-cells that participate in allergic and other diseases. Ligation of Siglec-8 by specific glycan ligands or antibodies triggers eosinophil death and inhibits mast cell degranulation; consequences that could be leveraged as treatment. However, Siglec-8 is not expressed in murine and most other species, thus limiting preclinical studies in vivo. Based on a ROSA26 knock-in vector, a construct was generated that contains the CAG promoter, a LoxP-floxed-Neo-STOP fragment, and full-length Siglec-8 cDNA. Through homologous recombination, this Siglec-8 construct was targeted into the mouse genome of C57BL/6 embryonic stem (ES) cells, and chimeric mice carrying the ROSA26-Siglec-8 gene were generated. After cross-breeding to mast cell-selective Cre-recombinase transgenic lines (CPA3-Cre, and Mcpt5-Cre), the expression of Siglec-8 in different cell types was determined by RT-PCR and flow cytometry. Peritoneal mast cells (dual FcεRI⁺ and c-Kit⁺) showed the strongest levels of surface Siglec-8 expression by multicolor flow cytometry compared to expression levels on tissue-derived mast cells. Siglec-8 was seen on a small percentage of peritoneal basophils, but not other leukocytes from CPA3-Siglec-8 mice. Siglec-8 mRNA and surface protein were also detected on bone marrow-derived mast cells. Transgenic expression of Siglec-8 in mice did not affect endogenous numbers of mast cells when quantified from multiple tissues. Thus, we generated two novel mouse strains, in which human Siglec-8 is selectively expressed on mast cells. These mice may enable the study of Siglec-8 biology in mast cells and its therapeutic targeting in vivo.


Asunto(s)
Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos B/genética , Regulación de la Expresión Génica , Lectinas/genética , Mastocitos/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Línea Celular , Técnicas de Sustitución del Gen , Marcación de Gen , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Lectinas/metabolismo , Mastocitos/inmunología , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética
17.
Glycobiology ; 27(6): 513-517, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922867

RESUMEN

Sialic acids have a special place in vertebrate glycobiology, where they constitute the dominant terminal saccharides on many cell surface glycans. From early studies that identified sialoglycans as receptors for important pathogens and toxins to more recent discoveries of sialic acid-binding proteins essential for immune system (and other) functions in humans, sialic acids and sialoglycans have become cornerstones in understanding vertebrate glycobiology and pathology. During a remarkable 3-year period in the late 1950s, a newly minted postdoctoral fellow (Donald G. Comb) and his young mentor (Saul Roseman) made a surprising series of discoveries that put sialic acid research on sound chemical and biochemical footing. A detailed personal letter written by Dr. Roseman that describes this period of intense sialic acid discovery, complete with inserted figures, was given to one of us (Y.C.L.) several years later. The text and figures of this letter provide a look back at the enthusiasm, rigor and serendipity that led to their important findings through the eyes of one of the key figures in sialic acid research.


Asunto(s)
Bioquímica de los Carbohidratos/historia , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Historia del Siglo XX
18.
Glycobiology ; 27(2): 129-139, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27683310

RESUMEN

Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galß1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity.


Asunto(s)
Resistencia a la Insulina/genética , Ácido N-Acetilneuramínico/metabolismo , Obesidad/genética , Sialiltransferasas/genética , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Galactosa/metabolismo , Gangliósidos/biosíntesis , Gangliósidos/genética , Prueba de Tolerancia a la Glucosa , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Ácido N-Acetilneuramínico/genética , Obesidad/patología , beta-Galactosida alfa-2,3-Sialiltransferasa
19.
Glycobiology ; 27(7): 657-668, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369504

RESUMEN

Siglecs are transmembrane sialoglycan binding proteins, most of which are expressed on leukocyte subsets and have inhibitory motifs that translate cell surface ligation into immune suppression. In humans, Siglec-8 on eosinophils, mast cells and basophils and Siglec-9 on neutrophils, monocytes and some T-cells, mediate immune cell death, inhibition of immune mediator release and/or enhancement of anti-inflammatory mediator release. Endogenous sialoglycan ligands in tissues, mostly uncharacterized, engage siglecs on leukocytes to inhibit inflammation. Glycan array analyses demonstrated that Siglec-8, Siglec-9 and their mouse counterparts Siglec-F and Siglec-E (respectively) have distinct glycan binding specificities, with Siglec-8 more structurally restricted. Since siglecs are involved in lung inflammation, we studied Siglec-8 and Siglec-9 ligands in human lungs and airways. Siglec-8 ligands are in tracheal submucosal glands and cartilage but not airway epithelium or connective tissues, whereas Siglec-9 ligands are broadly distributed. Mouse airways do not have Siglec-8 ligands, whereas Siglec-9 ligands are on airways of both species. Extraction of human airways and lung followed by electrophoretic resolution and siglec blotting revealed Siglec-8 ligands in extracts of human trachea and cultured tracheal gland cells, but not parenchyma or cultured airway epithelial cells whereas Siglec-9 ligands were extracted from all airway and lung tissues and cells tested. Siglec-8 and Siglec-9 ligands in airways appear to be high molecular weight O-linked sialoglycoproteins. These data reveal differential glycan specificities of Siglec-8, Siglec-9 and their mouse counterparts Siglec-F and Siglec-E, and the tissue distributions and molecular characteristics of Siglec-8 and Siglec-9 sialoglycan ligands on human airways and lungs.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Lectinas/metabolismo , Mucosa Respiratoria/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Adulto , Antígenos CD/química , Antígenos de Diferenciación de Linfocitos B/química , Células Cultivadas , Femenino , Humanos , Lectinas/química , Ligandos , Pulmón/citología , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/química , Tráquea/citología , Tráquea/metabolismo
20.
J Biol Chem ; 290(45): 27345-27359, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26370074

RESUMEN

Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.


Asunto(s)
Virus de la Leucemia Murina de Moloney/patogenicidad , Lectina 1 Similar a Ig de Unión al Ácido Siálico/química , Lectina 1 Similar a Ig de Unión al Ácido Siálico/fisiología , Animales , Sitios de Unión , Línea Celular , Gangliósidos/química , Gangliósidos/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Interferón-alfa/fisiología , Leucemia Experimental/fisiopatología , Leucemia Experimental/virología , Linfocitos/fisiología , Linfocitos/virología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Virus de la Leucemia Murina de Moloney/genética , Virus de la Leucemia Murina de Moloney/fisiología , Ácido N-Acetilneuramínico/química , Receptores Virales/química , Receptores Virales/fisiología , Infecciones por Retroviridae/fisiopatología , Infecciones por Retroviridae/virología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/genética , Infecciones Tumorales por Virus/fisiopatología , Infecciones Tumorales por Virus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA