Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127979

RESUMEN

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos , Genómica , Neoplasias Encefálicas/patología
2.
Psychol Med ; 54(5): 1016-1025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37749940

RESUMEN

BACKGROUND: Two established staging models outline the longitudinal progression in bipolar disorder (BD) based on episode recurrence or inter-episodic functioning. However, underlying neurobiological mechanisms and corresponding biomarkers remain unexplored. This study aimed to investigate if global and (sub)cortical brain structures, along with brain-predicted age difference (brain-PAD) reflect illness progression as conceptualized in these staging models, potentially identifying brain-PAD as a biomarker for BD staging. METHODS: In total, 199 subjects with bipolar-I-disorder and 226 control subjects from the Dutch Bipolar Cohort with a high-quality T1-weighted magnetic resonance imaging scan were analyzed. Global and (sub)cortical brain measures and brain-PAD (the difference between biological and chronological age) were estimated. Associations between individual brain measures and the stages of both staging models were explored. RESULTS: A higher brain-PAD (higher biological age than chronological age) correlated with an increased likelihood of being in a higher stage of the inter-episodic functioning model, but not in the model based on number of mood episodes. However, after correcting for the confounding factors lithium-use and comorbid anxiety, the association lost significance. Global and (sub)cortical brain measures showed no significant association with the stages. CONCLUSIONS: These results suggest that brain-PAD may be associated with illness progression as defined by impaired inter-episodic functioning. Nevertheless, the significance of this association changed after considering lithium-use and comorbid anxiety disorders. Further research is required to disentangle the intricate relationship between brain-PAD, illness stages, and lithium intake or anxiety disorders. This study provides a foundation for potentially using brain-PAD as a biomarker for illness progression.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/complicaciones , Litio , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Envejecimiento , Biomarcadores
3.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147389

RESUMEN

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
4.
J Neurosci ; 42(18): 3704-3715, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35318286

RESUMEN

Scaling between subcomponents of folding and total brain volume (TBV) in healthy individuals (HIs) is allometric. It is unclear whether this is true in schizophrenia (SZ) or first-episode psychosis (FEP). This study confirmed normative allometric scaling norms in HIs using discovery and replication samples. Cross-sectional and longitudinal diagnostic differences in folding subcomponents were then assessed using an allometric framework. Structural imaging from a longitudinal (Sample 1: HI and SZ, nHI Baseline = 298, nSZ Baseline = 169, nHI Follow-up = 293, nSZ Follow-up = 168, totaling 1087 images, all individuals ≥ 2 images, age 16-69 years) and a cross-sectional sample (Sample 2: nHI = 61 and nFEP = 89, age 10-30 years), all human males and females, is leveraged to calculate global folding and its nested subcomponents: sulcation index (SI, total sulcal/cortical hull area) and determinants of sulcal area: sulcal length and sulcal depth. Scaling of SI, sulcal area, and sulcal length with TBV in SZ and FEP was allometric and did not differ from HIs. Longitudinal age trajectories demonstrated steeper loss of SI and sulcal area through adulthood in SZ. Longitudinal allometric analysis revealed that both annual change in SI and sulcal area was significantly stronger related to change in TBV in SZ compared with HIs. Our results detail the first evidence of the disproportionate contribution of changes in SI and sulcal area to TBV changes in SZ. Longitudinal allometric analysis of sulcal morphology provides deeper insight into lifespan trajectories of cortical folding in SZ.SIGNIFICANCE STATEMENT Psychotic disorders are associated with deficits in cortical folding and brain size, but we lack knowledge of how these two morphometric features are related. We leverage cross-sectional and longitudinal samples in which we decompose folding into a set of nested subcomponents: sulcal and hull area, and sulcal depth and length. We reveal that, in both schizophrenia and first-episode psychosis, (1) scaling of subcomponents with brain size is different from expected scaling laws and (2) caution is warranted when interpreting results from traditional methods for brain size correction. Longitudinal allometric scaling points to loss of sulcal area as a principal contributor to loss of brain size in schizophrenia. These findings advance the understanding of cortical folding atypicalities in psychotic disorders.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adolescente , Adulto , Anciano , Encéfalo/anatomía & histología , Corteza Cerebral , Niño , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esquizofrenia/diagnóstico por imagen , Adulto Joven
5.
Cereb Cortex ; 31(2): 1296-1306, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33073292

RESUMEN

Children and adolescents show high variability in brain development. Brain age-the estimated biological age of an individual brain-can be used to index developmental stage. In a longitudinal sample of adolescents (age 9-23 years), including monozygotic and dizygotic twins and their siblings, structural magnetic resonance imaging scans (N = 673) at 3 time points were acquired. Using brain morphology data of different types and at different spatial scales, brain age predictors were trained and validated. Differences in brain age between males and females were assessed and the heritability of individual variation in brain age gaps was calculated. On average, females were ahead of males by at most 1 year, but similar aging patterns were found for both sexes. The difference between brain age and chronological age was heritable, as was the change in brain age gap over time. In conclusion, females and males show similar developmental ("aging") patterns but, on average, females pass through this development earlier. Reliable brain age predictors may be used to detect (extreme) deviations in developmental state of the brain early, possibly indicating aberrant development as a sign of risk of neurodevelopmental disorders.


Asunto(s)
Desarrollo del Adolescente/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Caracteres Sexuales , Gemelos/genética , Adolescente , Factores de Edad , Niño , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/tendencias , Masculino , Sistema de Registros , Adulto Joven
6.
Cereb Cortex ; 31(11): 5107-5120, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34179960

RESUMEN

Sex differences in the development and aging of human sulcal morphology have been understudied. We charted sex differences in trajectories and inter-individual variability of global sulcal depth, width, and length, pial surface area, exposed (hull) gyral surface area, unexposed sulcal surface area, cortical thickness, gyral span, and cortex volume across the lifespan in a longitudinal sample (700 scans, 194 participants 2 scans, 104 three scans, age range: 16-70 years) of neurotypical males and females. After adjusting for brain volume, females had thicker cortex and steeper thickness decline until age 40 years; trajectories converged thereafter. Across sexes, sulcal shortening was faster before age 40, while sulcal shallowing and widening were faster thereafter. Although hull area remained stable, sulcal surface area declined and was more strongly associated with sulcal shortening than with sulcal shallowing and widening. Males showed greater variability for cortex volume and lower variability for sulcal width. Our findings highlight the association between loss of sulcal area, notably through sulcal shortening, with cortex volume loss. Studying sex differences in lifespan trajectories may improve knowledge of individual differences in brain development and the pathophysiology of neuropsychiatric conditions.


Asunto(s)
Longevidad , Caracteres Sexuales , Adolescente , Adulto , Anciano , Envejecimiento/fisiología , Corteza Cerebral , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
7.
BMC Psychiatry ; 22(1): 695, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368947

RESUMEN

BACKGROUND: People with severe mental illness (SMI) often suffer from long-lasting symptoms that negatively influence their social functioning, their ability to live a meaningful life, and participation in society. Interventions aimed at increasing physical activity can improve social functioning, but people with SMI experience multiple barriers to becoming physically active. Besides, the implementation of physical activity interventions in day-to-day practice is difficult. In this study, we aim to evaluate the effectiveness and implementation of a physical activity intervention to improve social functioning, mental and physical health. METHODS: In this pragmatic stepped wedge cluster randomized controlled trial we aim to include 100 people with SMI and their mental health workers from a supported housing organization. The intervention focuses on increasing physical activity by implementing group sports activities, active guidance meetings, and a serious game to set physical activity goals. We aim to decrease barriers to physical activity through active involvement of the mental health workers, lifestyle courses, and a medication review. Participating locations will be divided into four clusters and randomization will decide the start of the intervention. The primary outcome is social functioning. Secondary outcomes are quality of life, symptom severity, physical activity, cardiometabolic risk factors, cardiorespiratory fitness, and movement disturbances with specific attention to postural adjustment and movement sequencing in gait. In addition, we will assess the implementation by conducting semi-structured interviews with location managers and mental health workers and analyze them by direct content analysis. DISCUSSION: This trial is innovative since it aims to improve social functioning in people with SMI through a physical activity intervention which aims to lower barriers to becoming physically active in a real-life setting. The strength of this trial is that we will also evaluate the implementation of the intervention. Limitations of this study are the risk of poor implementation of the intervention, and bias due to the inclusion of a medication review in the intervention that might impact outcomes. TRIAL REGISTRATION: This trial was registered prospectively in The Netherlands Trial Register (NTR) as NTR NL9163 on December 20, 2020. As the The Netherlands Trial Register is no longer available, the trial can now be found in the International Clinical Trial Registry Platform via: https://trialsearch.who.int/Trial2.aspx?TrialID=NL9163 .


Asunto(s)
Trastornos Mentales , Calidad de Vida , Humanos , Interacción Social , Trastornos Mentales/terapia , Trastornos Mentales/psicología , Ejercicio Físico , Estilo de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Hum Brain Mapp ; 42(11): 3643-3655, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33973694

RESUMEN

Surface rendering of MRI brain scans may lead to identification of the participant through facial characteristics. In this study, we evaluate three methods that overwrite voxels containing privacy-sensitive information: Face Masking, FreeSurfer defacing, and FSL defacing. We included structural T1-weighted MRI scans of children, young adults and older adults. For the young adults, test-retest data were included with a 1-week interval. The effects of the de-identification methods were quantified using different statistics to capture random variation and systematic noise in measures obtained through the FreeSurfer processing pipeline. Face Masking and FSL defacing impacted brain voxels in some scans especially in younger participants. FreeSurfer defacing left brain tissue intact in all cases. FSL defacing and FreeSurfer defacing preserved identifiable characteristics around the eyes or mouth in some scans. For all de-identification methods regional brain measures of subcortical volume, cortical volume, cortical surface area, and cortical thickness were on average highly replicable when derived from original versus de-identified scans with average regional correlations >.90 for children, young adults, and older adults. Small systematic biases were found that incidentally resulted in significantly different brain measures after de-identification, depending on the studied subsample, de-identification method, and brain metric. In young adults, test-retest intraclass correlation coefficients (ICCs) were comparable for original scans and de-identified scans with average regional ICCs >.90 for (sub)cortical volume and cortical surface area and ICCs >.80 for cortical thickness. We conclude that apparent visual differences between de-identification methods minimally impact reliability of brain measures, although small systematic biases can occur.


Asunto(s)
Encéfalo/diagnóstico por imagen , Anonimización de la Información , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Corteza Cerebral , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Mol Psychiatry ; 25(9): 2130-2143, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171211

RESUMEN

Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
10.
Brain ; 143(3): 1027-1038, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32103250

RESUMEN

Neurobiological heterogeneity in schizophrenia is poorly understood and confounds current analyses. We investigated neuroanatomical subtypes in a multi-institutional multi-ethnic cohort, using novel semi-supervised machine learning methods designed to discover patterns associated with disease rather than normal anatomical variation. Structural MRI and clinical measures in established schizophrenia (n = 307) and healthy controls (n = 364) were analysed across three sites of PHENOM (Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging) consortium. Regional volumetric measures of grey matter, white matter, and CSF were used to identify distinct and reproducible neuroanatomical subtypes of schizophrenia. Two distinct neuroanatomical subtypes were found. Subtype 1 showed widespread lower grey matter volumes, most prominent in thalamus, nucleus accumbens, medial temporal, medial prefrontal/frontal and insular cortices. Subtype 2 showed increased volume in the basal ganglia and internal capsule, and otherwise normal brain volumes. Grey matter volume correlated negatively with illness duration in Subtype 1 (r = -0.201, P = 0.016) but not in Subtype 2 (r = -0.045, P = 0.652), potentially indicating different underlying neuropathological processes. The subtypes did not differ in age (t = -1.603, df = 305, P = 0.109), sex (chi-square = 0.013, df = 1, P = 0.910), illness duration (t = -0.167, df = 277, P = 0.868), antipsychotic dose (t = -0.439, df = 210, P = 0.521), age of illness onset (t = -1.355, df = 277, P = 0.177), positive symptoms (t = 0.249, df = 289, P = 0.803), negative symptoms (t = 0.151, df = 289, P = 0.879), or antipsychotic type (chi-square = 6.670, df = 3, P = 0.083). Subtype 1 had lower educational attainment than Subtype 2 (chi-square = 6.389, df = 2, P = 0.041). In conclusion, we discovered two distinct and highly reproducible neuroanatomical subtypes. Subtype 1 displayed widespread volume reduction correlating with illness duration, and worse premorbid functioning. Subtype 2 had normal and stable anatomy, except for larger basal ganglia and internal capsule, not explained by antipsychotic dose. These subtypes challenge the notion that brain volume loss is a general feature of schizophrenia and suggest differential aetiologies. They can facilitate strategies for clinical trial enrichment and stratification, and precision diagnostics.


Asunto(s)
Sustancia Gris/patología , Aprendizaje Automático , Esquizofrenia/clasificación , Esquizofrenia/patología , Sustancia Blanca/patología , Adulto , Atrofia/patología , Encéfalo/patología , Estudios de Casos y Controles , Escolaridad , Femenino , Humanos , Hipertrofia/patología , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Esquizofrenia/líquido cefalorraquídeo , Adulto Joven
11.
Neuroimage ; 220: 116842, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32339774

RESUMEN

Normal brain-aging occurs at all structural levels. Excessive pathophysiological changes in the brain, beyond the normal one, are implicated in the etiology of brain disorders such as severe forms of the schizophrenia spectrum and dementia. To account for brain-aging in health and disease, it is critical to study the age-dependent trajectories of brain biomarkers at various levels and among different age groups. The intracranial volume (ICV) is a key biological marker, and changes in the ICV during the lifespan can teach us about the biology of development, aging, and gene X environment interactions. However, whether ICV changes with age in adulthood is not resolved. Applying a semi-automatic in-house-built algorithm for ICV extraction on T1w MR brain scans in the Dutch longitudinal cohort (GROUP), we measured ICV changes. Individuals between the ages of 16 and 55 years were scanned up to three consecutive times with 3.32±0.32 years between consecutive scans (N = 482, 359, 302). Using the extracted ICVs, we calculated ICV longitudinal aging-trajectories based on three analysis methods; direct calculation of ICV differences between the first and the last scan, fitting all ICV measurements of individuals to a straight line, and applying a global linear mixed model fitting. We report statistically significant increase in the ICV in adulthood until the fourth decade of life (average change +0.03%/y, or about 0.5 ml/y, at age 20), and decrease in the ICV afterward (-0.09%/y, or about -1.2 ml/y, at age 55). To account for previous cross-sectional reports of ICV changes, we analyzed the same data using a cross-sectional approach. Our cross-sectional analysis detected ICV changes consistent with the previously reported cross-sectional effect. However, the reported amount of cross-sectional changes within this age range was significantly larger than the longitudinal changes. We attribute the cross-sectional results to a generational effect. In conclusion, the human intracranial volume does not stay constant during adulthood but instead shows a small increase during young adulthood and a decrease thereafter from the fourth decade of life. The age-related changes in the longitudinalmeasure are smaller than those reported using cross-sectional approaches and unlikely to affect structural brain imaging studies correcting for intracranial volume considerably. As to the possible mechanisms involved, this awaits further study, although thickening of the meninges and skull bones have been proposed, as well as a smaller amount of brain fluids addition above the overall loss of brain tissue.


Asunto(s)
Envejecimiento , Encéfalo/diagnóstico por imagen , Adolescente , Adulto , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/fisiología , Adulto Joven
12.
Hum Brain Mapp ; 40(5): 1643-1653, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30569528

RESUMEN

Autism spectrum disorders (ASD) and early-onset psychosis (EOP) are neurodevelopmental disorders that share genetic, clinical and cognitive facets; it is unclear if these disorders also share spatially overlapping cortical thickness (CT) and surface area (SA) abnormalities. MRI scans of 30 ASD, 29 patients with early-onset first-episode psychosis (EO-FEP) and 26 typically developing controls (TD) (age range 10-18 years) were analyzed by the FreeSurfer suite to calculate vertex-wise estimates of CT, SA, and cortical volume. Two publicly available datasets of ASD and EOP (age range 7-18 years and 5-17 years, respectively) were used for replication analysis. ASD and EO-FEP had spatially overlapping areas of cortical thinning and reduced SA in the bilateral insula (all p's < .00002); 37% of all left insular vertices presenting with significant cortical thinning and 20% (left insula) and 61% (right insula) of insular vertices displaying decreased SA overlapped across both disorders. In both disorders, SA deficits contributed more to cortical volume decreases than reductions in CT did. This finding, as well as the novel finding of an absence of spatial overlap (for ASD) or marginal overlap (for EOP) of deficits in CT and SA, was replicated in the two nonoverlapping independent samples. The insula appears to be a region with transdiagnostic vulnerability for deficits in CT and SA. The finding of nonexistent or small spatial overlap between CT and SA deficits in young people with ASD and psychosis may point to the involvement of common aberrant early neurodevelopmental mechanisms in their pathophysiology.


Asunto(s)
Trastorno del Espectro Autista/patología , Trastornos Psicóticos/patología , Adolescente , Envejecimiento/patología , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/psicología , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Niño , Cognición , Bases de Datos Factuales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/psicología
13.
Neuroimage ; 155: 10-24, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28428048

RESUMEN

One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models.


Asunto(s)
Conjuntos de Datos como Asunto , Estudios Multicéntricos como Asunto , Neuroimagen/métodos , Esquizofrenia/diagnóstico por imagen , Máquina de Vectores de Soporte , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Reconocimiento de Normas Patrones Automatizadas/métodos
14.
Neuroimage ; 145(Pt B): 209-217, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27039698

RESUMEN

The aim of this review is to assess the potential for neuroimaging measures to facilitate prediction of the onset of psychosis. Research in this field has mainly involved people at 'ultra-high risk' (UHR) of psychosis, who have a very high risk of developing a psychotic disorder within a few years of presentation to mental health services. The review details the key findings and developments in this area to date and examines the methodological and logistical challenges associated with making predictions in an individual subject in a clinical setting.


Asunto(s)
Aprendizaje Automático , Neuroimagen/métodos , Trastornos Psicóticos/diagnóstico por imagen , Humanos
15.
Neuroimage ; 145(Pt B): 246-253, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27421184

RESUMEN

Structural Magnetic Resonance Imaging (MRI) studies have attempted to use brain measures obtained at the first-episode of psychosis to predict subsequent outcome, with inconsistent results. Thus, there is a real need to validate the utility of brain measures in the prediction of outcome using large datasets, from independent samples, obtained with different protocols and from different MRI scanners. This study had three main aims: 1) to investigate whether structural MRI data from multiple centers can be combined to create a machine-learning model able to predict a strong biological variable like sex; 2) to replicate our previous finding that an MRI scan obtained at first episode significantly predicts subsequent illness course in other independent datasets; and finally, 3) to test whether these datasets can be combined to generate multicenter models with better accuracy in the prediction of illness course. The multi-center sample included brain structural MRI scans from 256 males and 133 females patients with first episode psychosis, acquired in five centers: University Medical Center Utrecht (The Netherlands) (n=67); Institute of Psychiatry, Psychology and Neuroscience, London (United Kingdom) (n=97); University of São Paulo (Brazil) (n=64); University of Cantabria, Santander (Spain) (n=107); and University of Melbourne (Australia) (n=54). All images were acquired on 1.5-Tesla scanners and all centers provided information on illness course during a follow-up period ranging 3 to 7years. We only included in the analyses of outcome prediction patients for whom illness course was categorized as either "continuous" (n=94) or "remitting" (n=118). Using structural brain scans from all centers, sex was predicted with significant accuracy (89%; p<0.001). In the single- or multi-center models, illness course could not be predicted with significant accuracy. However, when reducing heterogeneity by restricting the analyses to male patients only, classification accuracy improved in some samples. This study provides proof of concept that combining multi-center MRI data to create a well performing classification model is possible. However, to create complex multi-center models that perform accurately, each center should contribute a sample either large or homogeneous enough to first allow accurate classification within the single-center.


Asunto(s)
Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Imagen por Resonancia Magnética/métodos , Estudios Multicéntricos como Asunto , Trastornos Psicóticos/diagnóstico por imagen , Adulto , Femenino , Estudios de Seguimiento , Humanos , Masculino , Prueba de Estudio Conceptual , Factores Sexuales , Adulto Joven
16.
Hum Brain Mapp ; 38(2): 704-714, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27699911

RESUMEN

An important focus of studies of individuals at ultra-high risk (UHR) for psychosis has been to identify biomarkers to predict which individuals will transition to psychosis. However, the majority of individuals will prove to be resilient and go on to experience remission of their symptoms and function well. The aim of this study was to investigate the possibility of using structural MRI measures collected in UHR adolescents at baseline to quantitatively predict their long-term clinical outcome and level of functioning. We included 64 UHR individuals and 62 typically developing adolescents (12-18 years old at recruitment). At six-year follow-up, we determined resilience for 43 UHR individuals. Support Vector Regression analyses were performed to predict long-term functional and clinical outcome from baseline MRI measures on a continuous scale, instead of the more typical binary classification. This led to predictive correlations of baseline MR measures with level of functioning, and negative and disorganization symptoms. The highest correlation (r = 0.42) was found between baseline subcortical volumes and long-term level of functioning. In conclusion, our results show that structural MRI data can be used to quantitatively predict long-term functional and clinical outcome in UHR individuals with medium effect size, suggesting that there may be scope for predicting outcome at the individual level. Moreover, we recommend classifying individual outcome on a continuous scale, enabling the assessment of different functional and clinical scales separately without the need to set a threshold. Hum Brain Mapp 38:704-714, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Aprendizaje Automático , Trastornos Psicóticos/patología , Adolescente , Niño , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas , Escalas de Valoración Psiquiátrica , Trastornos Psicóticos/diagnóstico por imagen , Curva ROC , Factores de Riesgo
17.
Hum Brain Mapp ; 38(9): 4444-4458, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28580697

RESUMEN

Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Variación Biológica Individual , Encéfalo/diagnóstico por imagen , Modelos Genéticos , Carácter Cuantitativo Heredable , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Interacción Gen-Ambiente , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Modelos Neurológicos , Tamaño de los Órganos/genética , Estudios en Gemelos como Asunto
18.
Cereb Cortex ; 25(6): 1608-17, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24408955

RESUMEN

Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface over time in 504 healthy subjects. At 10 years of age, more intelligent children have a slightly thinner cortex than children with a lower IQ. This relationship becomes more pronounced with increasing age: with higher IQ, a faster thinning of the cortex is found over time. In the more intelligent young adults, this relationship reverses so that by the age of 42 a thicker cortex is associated with higher intelligence. In contrast, cortical surface is larger in more intelligent children at the age of 10. The cortical surface is still expanding, reaching its maximum area during adolescence. With higher IQ, cortical expansion is completed at a younger age; and once completed, surface area decreases at a higher rate. These findings suggest that intelligence may be more related to the magnitude and timing of changes in brain structure during development than to brain structure per se, and that the cortex is never completed but shows continuing intelligence-dependent development.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Inteligencia , Adolescente , Adulto , Envejecimiento/fisiología , Niño , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Pruebas de Inteligencia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis de Regresión , Adulto Joven
19.
Behav Genet ; 45(3): 313-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25656383

RESUMEN

Puberty is characterized by major changes in hormone levels and structural changes in the brain. To what extent these changes are associated and to what extent genes or environmental influences drive such an association is not clear. We acquired circulating levels of luteinizing hormone, follicle stimulating hormone (FSH), estradiol and testosterone and magnetic resonance images of the brain from 190 twins at age 9 [9.2 (0.11) years; 99 females/91 males]. This protocol was repeated at age 12 [12.1 (0.26) years] in 125 of these children (59 females/66 males). Using voxel-based morphometry, we tested whether circulating hormone levels are associated with grey matter density in boys and girls in a longitudinal, genetically informative design. In girls, changes in FSH level between the age of 9 and 12 positively associated with changes in grey matter density in areas covering the left hippocampus, left (pre)frontal areas, right cerebellum, and left anterior cingulate and precuneus. This association was mainly driven by environmental factors unique to the individual (i.e. the non-shared environment). In 12-year-old girls, a higher level of circulating estradiol levels was associated with lower grey matter density in frontal and parietal areas. This association was driven by environmental factors shared among the members of a twin pair. These findings show a pattern of physical and brain development going hand in hand.


Asunto(s)
Sustancia Gris/crecimiento & desarrollo , Hormonas/sangre , Adolescente , Encéfalo/crecimiento & desarrollo , Cerebelo/crecimiento & desarrollo , Niño , Estradiol/sangre , Femenino , Hormona Folículo Estimulante/sangre , Genética Conductual , Humanos , Estudios Longitudinales , Hormona Luteinizante/sangre , Imagen por Resonancia Magnética , Masculino , Polimorfismo de Nucleótido Simple , Pubertad , Testosterona/sangre , Gemelos Dicigóticos , Gemelos Monocigóticos
20.
J Neurosci ; 33(38): 15004-10, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24048830

RESUMEN

The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Adolescente , Factores de Edad , Niño , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA