Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405666, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884268

RESUMEN

The solvothermal reaction of FeCl2·4H2O and H4TBC[4] in a basic dmf/EtOH solution affords an [FeIII18] Keplerate conforming to a stellated cuboctahedron. Magnetic measurements reveal spin frustration effects arising from the high symmetry.

2.
J Am Chem Soc ; 145(14): 7743-7747, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010322

RESUMEN

Reaction of Gd(OAc)3·4H2O, salicylaldehyde and CH3ONa in MeCN/MeOH affords [Gd12Na6(OAc)25(HCO2)5(CO3)6(H2O)12]·9H2O.0.5MeCN (1·9H2O.0.5MeCN), whose structure describes a quadruple-wheel consisting of two {Na3} and two {Gd6} rings. The magnetic properties of 1 reveal very weak antiferromagnetic interactions between the GdIII ions, which give rise to a record magnetocaloric effect at low applied magnetic fields and low temperatures. The magnetic entropy change reaches -ΔSm= 29.3 J kg-1 K-1 for full demagnetization from B = 1 T at T = 0.5 K.

3.
Inorg Chem ; 62(17): 6642-6648, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068219

RESUMEN

The synthesis, structural, and magnetic characterization of [FeIII4LnIII4(teaH)8(N3)8(H2O)] (Ln = Gd and Y) and the previously reported isostructural Dy analogue are discussed. The commonly held belief that both FeIII and GdIII can be regarded as isotropic ions is shown to be an oversimplification. This conclusion is derived from the magnetic data for the YIII analogue in terms of the zero-field splitting seen for FeIII and from the fact that the magnetic data for the new GdIII analogue can only be fit employing an additional anisotropy term for the GdIII ions. Furthermore, the Fe4Gd4 ring shows slow relaxation of magnetization. Our analysis of the experimental magnetic data employs both density functional theory as well as the finite-temperature Lanczos method which finally enables us to provide an almost perfect fit of magnetocaloric properties.

4.
Chemistry ; 27(61): 15239-15250, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34427372

RESUMEN

The first confacial pentaoctahedron comprised of transition metal ions namely ZnII FeIII A FeIII B FeIII A ZnII has been synthesized by using a dinucleating nonadentate ligand. The face-sharing bridging mode enforces short ZnII ⋅⋅⋅FeIII A and FeIII A ⋅⋅⋅FeIII B distances of 2.83 and 2.72 Å, respectively. Ab-initio CASSCF/NEVPT2 calculations provide significant negative zero-field splittings for FeIII A and FeIII B with |DA |>|DB | with the main component along the C3 axis. Hence, a spin-Hamiltonian comprised of anisotropic exchange, zero-field, and Zeeman term was employed. This allowed by following the boundary conditions from the theoretical results the simulation in a theory-guided parameter determination with Jxy =+0.37, Jz =-0.32, DA =-1.21, EA =-0.24, DB =-0.35, and EB =-0.01 cm-1 supported by simulations of high-field magnetic Mössbauer spectra recorded at 2 K. The weak but ferromagnetic FeIII A FeIII B interaction arises from the small bridging angle of 84.8° being at the switch from anti- to ferromagnetic for the face-sharing bridging mode.

5.
Chemistry ; 27(61): 15080-15084, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34416050

RESUMEN

The 36-NiII -containing 54-tungsto-6-silicate, [Ni36 (OH)18 (H2 O)36 (SiW9 O34 )6 ]6- (Ni36 ) was synthesized by a simple one-pot reaction of the Ni2 -pivalate complex [Ni2 (µ-OH2 )(O2 CCMe3 )4 (HO2 CCMe3 )4 ] with the trilacunary [SiW9 O34 ]10- polyanion precursor in water and structurally characterized by a multitude of physicochemical techniques including single-crystal XRD, FTIR, TGA, elemental analysis, magnetic and electrochemical studies. Polyanion Ni36 comprises six equivalent {NiII 6 SiW9 } units which are linked by Ni-O-W bridges forming a macrocyclic assembly. Magnetic studies demonstrate that the {Ni6 } building blocks in Ni36 remain magnetically intact while forming a hexagonal ring with antiferromagnetic exchange interactions between adjacent {Ni6 } units. Electrochemical studies indicate that the first reduction is reversible and associated with the WVI/V couple, whereas the second reduction is irreversible attributed to the NiII/0 couple.


Asunto(s)
Níquel , Silicatos , Cristalografía por Rayos X , Fenómenos Magnéticos , Estructura Molecular
6.
Angew Chem Int Ed Engl ; 60(17): 9489-9492, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33576165

RESUMEN

A finite chain of thirty-one paramagnetic centers is reported, synthesized by reaction of hydrated chromium fluoride, copper carbonate and pivalic acid in the presence of 1,4,7,10-tetrazacyclododecane (cyclen). Magnetic studies show predominantly anti-ferromagnetic exchange leading to a high density of low-lying spin states and large saturation field.

7.
J Am Chem Soc ; 142(35): 14838-14842, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786752

RESUMEN

Cyclic coordination clusters (CCCs) are proving to provide an extra dimension in terms of exotic magnetic behavior as a result of their finite but cyclized chain structures. The Fe18Dy6 CCC is a Single Molecule Magnet with the highest nuclearity among Ln containing clusters. The three isostructural compounds [Fe18Ln6(µ-OH)6(ampd)12(Hampd)12(PhCO2)24](NO3)6·38MeCN for Ln = DyIII (1), LuIII (2), or YIII (3), where H2ampd = 2-amino-2-methyl-1,3-propanediol, are reported. These can be described in terms of the cyclization of six {Fe3Ln(µOH)(ampd)2(Hampd)2(PhCO2)4}+ units with six nitrate counterions to give the neutral cluster. The overall structure consists of two giant Dy3 triangles sandwiching a strongly antiferromagnetically coupled Fe18 ring, leading to a toroidal arrangement of the anisotropy axis of the Dy ions, making this the biggest toroidal arrangement on a molecular level known so far.

8.
Phys Rev Lett ; 125(11): 117207, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975976

RESUMEN

We present numerical evidence for the crystallization of magnons below the saturation field at nonzero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or, equivalently, flatband multimagnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon crystal is expected to be generic for spin models in dimension D>1 where flatband multimagnon ground states break translational symmetry.

9.
Chemistry ; 25(19): 4992-5004, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860288

RESUMEN

The anisotropy barrier of polynuclear single-molecule magnets is expected to be higher with less tunneling the better stabilized the spin ground state is so that less MS mixing in the ground state and with excited spin states occur. We have realized this experimentally in two structurally related heptanuclear SMMs: the triplesalen-based [MnIII 6 CrIII ]3+ and the triplesalalen-based *[MnIII 6 CrIII ]3+ . The ligand system triplesalen was developed to enforce ferromagnetic interactions by the spin-polarization mechanism. However, we found weak antiferromagnetic couplings, that we assigned to an inefficient spin-polarization by a heteroradialene formation. To prevent this heteroradialene formation, the triplesalalen ligand H6 talalen t Bu 2 was designed. Here, we present the building block [(talalen t Bu 2 )MnIII 3 ]3+ and its application for the assembly of [{(talalen t Bu 2 )MnIII 3 }2 {CrIII (CN)6 }]3+ (=*[MnIII 6 CrIII ]3+ ). Both the trinuclear and heptanuclear complexes are SMMs. The comparison to the related triplesalen complex [(feld t Bu 2 )MnIII 3 ]3+ proves the absence of heteroradialene character and the enforcement of ferromagnetic MnIII -MnIII interactions in the (talalen t Bu 2 )6- complexes. This results in an increase of the barrier for spin reversal Ueff from 25 K in the triplesalen-based [MnIII 6 CrIII ]3+ SMMs to 37 K in the triplesalalen-based *[MnIII 6 CrIII ]3+ SMM proving the success of our concept. Based on this study, the next step in the rational improvement of our SMMs is discussed.

10.
Angew Chem Int Ed Engl ; 58(47): 16903-16906, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31535459

RESUMEN

The dissolution of anhydrous iron bromide in a mixture of pyridine and acetonitrile, in the presence of an organic amine, results in the formation of an [Fe34 ] metal oxide molecule, structurally characterised by alternate layers of tetrahedral and octahedral FeIII ions connected by oxide and hydroxide ions. The outer shell of the complex is capped by a combination of pyridine molecules and bromide ions. Magnetic data, measured at temperatures as low as 0.4 K and fields up to 35 T, reveal competing antiferromagnetic exchange interactions; DFT calculations showing that the magnitudes of the coupling constants are highly dependent on both the Fe-O-Fe angles and Fe-O distances. The simplicity of the synthetic methodology, and the structural similarity between [Fe34 ], bulk iron oxides, previous FeIII -oxo cages, and polyoxometalates (POMs), hints that much larger molecular FeIII oxides can be made.

11.
Inorg Chem ; 56(24): 15119-15129, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29190081

RESUMEN

Single-molecule magnets (SMMs) retain a magnetization without applied magnetic field for a decent time due to an energy barrier U for spin-reversal. Despite the success to increase U, the difficult to control magnetic quantum tunneling often leads to a decreased effective barrier Ueff and a fast relaxation. Here, we demonstrate the influence of the exchange coupling on the tunneling probability in two heptanuclear SMMs hosting the same spin-system with the same high spin ground state St = 21/2. A chirality-induced symmetry reduction leads to a switch of the MnIII-MnIII exchange from antiferromagnetic in the achiral SMM [MnIII6CrIII]3+ to ferromagnetic in the new chiral SMM RR[MnIII6CrIII]3+. Multispin Hamiltonian analysis by full-matrix diagonalization demonstrates that the ferromagnetic interactions in RR[MnIII6CrIII]3+ enforce a well-defined St = 21/2 ground state with substantially less mixing of MS substates in contrast to [MnIII6CrIII]3+ and no tunneling pathways below the top of the energy barrier. This is experimentally verified as Ueff is smaller than the calculated energy barrier U in [MnIII6CrIII]3+ due to tunneling pathways, whereas Ueff equals U in RR[MnIII6CrIII]3+ demonstrating the absence of quantum tunneling.

12.
J Phys Chem A ; 121(6): 1310-1318, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28099014

RESUMEN

A computational study and magnetic susceptibility measurements of three homonuclear Fe(III) Keggin structures are herein presented: the [FeO4@Fe12F24(µ-OCH3)12]5- anion (1), the [Bi6{FeO4@Fe12O12(OH)12}(µ-O2CCCl3)12]+ cation (2) and its polymorph [Bi6{FeO4@Fe12O12(OH)10(H2O)2}(µ-O2CCF3)10]3+ (3). These results are contrasted with the exchange interactions present in the previously characterized [Fe6(OH)3Ge2W18O68(OH)6]11- and [H12As4Fe8W30O120(H2O)2]4- anions. The computational analysis shows that the most significant antiferromagnetic spin coupling takes place at the junction between each of the {Fe3O6(OH)3}/{Fe3F6(OCH3)3} framework motifs, a possibility that had been previously discarded in the literature on the basis of the Fe-Fe distances. For all the examined iron(III) Keggin structures, it is found that the magnitude of the magnetic couplings within each structural subunit follows the same trend.

13.
Chemistry ; 22(42): 14846-14850, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27481541

RESUMEN

The design and synthesis of model compounds that do not exist naturally is one of the important targets in modern coordination chemistry. Herein, an eighteen-membered honeycomb structure with equal numbers of MnII (s=5/2) and GdIII (s=7/2) metal centers has been prepared, for the first time, by using a hydrophobic force-directed self-assembling process. Due to the weakly coupled GdIII pairs, the magnetic properties are mainly determined by eight-membered chains in the experimentally considered temperature range. These [Mn4 Gd4 ] "finite-size" chains, albeit with large Hilbert space, can be fully resolved by the high-temperature series expansion and the powerful finite-temperature Lanczos method, which reveal that the exchange-couplings between the metal centers are antiferromagnetic and consistent with the magnetization measurement. Interestingly, from the surface-engineering point of view, the [Mn4 Gd4 ] chains are "precisely" assembled into a 2D honeycomb pattern, which is potentially desirable in the design of weakly coupled qubits.

14.
Chemphyschem ; 17(1): 55-60, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26530901

RESUMEN

Keplerates are molecules that contain metal polyhedra that describe both Platonic and Archimedean solids; new copper keplerates are reported, with physical studies indicating that even where very high molecular symmetry is found, the low-temperature physics does not necessarily reflect this symmetry.

15.
Inorg Chem ; 55(20): 10535-10546, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27685336

RESUMEN

The family of compounds of general formula [LnIII4TMII8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4 {[Gd4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1a); [Y4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1b); [Gd4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2a); [Y4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2b); [Gd4Cu8(OH)8(hep)8(O2CiPr)8](ClO4)4 (3a); [Gd4Cu8(OH)8(Hpdm)8(O2CtBu)8](ClO4)4 (4a); [Gd4Cu8(OH)8(ea)8(O2CMe)8](ClO4)4 (5a); [Gd4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6a); [Y4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6b); [Gd4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7a); [Y4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7b)} can be formed very simply and in high yields from the reaction of Ln(NO3)3·6H2O and TM(ClO4)2·6H2O and the appropriate ligand blend in a mixture of CH2Cl2 and MeOH in the presence of a suitable base. Remarkably, almost all the constituent parts, namely the lanthanide (or rare earth) ions LnIII (here Ln = Gd or Y), the transition metal ions TMII (here TM = Zn, Cu, Ni, Co), the bridging ligand L (Hhmp = 2-(hydroxymethyl)pyridine; Hhep = 2-(hydroxyethyl)pyridine; H2pdm = pyridine-2,6-dimethanol; Hea = 2-ethanolamine), and the carboxylates can be exchanged while maintaining the structural integrity of the molecule. NMR spectroscopy of diamagnetic complex 1b reveals the complex to be fully intact in solution with all signals from the hydroxide, ligand L, and the carboxylates equivalent on the NMR time scale, suggesting the complex possesses greater symmetry in solution than in the solid state. High resolution nano-ESI mass spectrometry on dichloromethane solutions of 2a and 2b shows both complexes are present in two charge states with little fragmentation; with the most intense peak in each spectrum corresponding to [Ln4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)22+. This family of compounds offers an excellent playground for probing how the magnetocaloric effect evolves by introducing either antiferromagnetic or ferromagnetic interactions, or magnetic anisotropy, by substituting the nonmagnetic ZnII (1a) with CuII (2a), NiII (6a) or CoII (7a), respectively. The largest magnetocaloric effect is found for the ferromagnetically coupled complex 6a, while the predominant antiferromagnetic interactions in 2a yield an inverse magnetocaloric effect; that is, the temperature increases on lowering the applied field, under the proper experimental conditions. In spite of increasing the magnetic density by adding ions that bring in antiferromagnetic interactions (2a) or magnetic anisotropy (7a), the magnetocaloric effect is overall smaller in 2a and 7a than in 1a, where only four GdIII spins per molecule contribute to the magnetocaloric properties.

16.
Inorg Chem ; 54(13): 6331-7, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26351709

RESUMEN

Two families of copper lanthanide phosphonate clusters have been obtained through reaction of [Cu2(O2CtBu)4(HO2CtBu)2] and either Ln(NO3)3·nH2O or [Ln2(O2CtBu)6(HO2CtBu)6] and tert-butylphosphonic acid or an amino-functionalized phosphonic acid. The clusters, with general formula [Cu(MeCN)4][Cu3Ln9(µ3-OH)7(O3PtBu)6(O2CtBu)15] and [Cu6Ln6(µ3-OH)6(O3PC(NH2)Me2)6(O2CtBu)12], were structurally characterized through single crystal X-ray diffraction and possess highly symmetric metal cores with approximately C3v and D3h point symmetry, respectively. We have investigated the possible application of the isotropic analogues in magnetic cooling, where we were able to observe that up to around 70% of the theoretical magnetic entropy change is obtained. Simulation of the magnetic data shows antiferromagnetic coupling between the spin centers, which explains the magnetic entropy value observed.

17.
Inorg Chem ; 54(13): 6331-7, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26061255

RESUMEN

Two families of copper lanthanide phosphonate clusters have been obtained through reaction of [Cu2(O2C(t)Bu)4(HO2C(t)Bu)2] and either Ln(NO3)3·nH2O or [Ln2(O2C(t)Bu)6(HO2C(t)Bu)6] and tert-butylphosphonic acid or an amino-functionalized phosphonic acid. The clusters, with general formula [Cu(MeCN)4][Cu3Ln9(µ3-OH)7(O3P(t)Bu)6(O2C(t)Bu)15] and [Cu6Ln6(µ3-OH)6(O3PC(NH2)Me2)6(O2C(t)Bu)12], were structurally characterized through single crystal X-ray diffraction and possess highly symmetric metal cores with approximately C3v and D3h point symmetry, respectively. We have investigated the possible application of the isotropic analogues in magnetic cooling, where we were able to observe that up to around 70% of the theoretical magnetic entropy change is obtained. Simulation of the magnetic data shows antiferromagnetic coupling between the spin centers, which explains the magnetic entropy value observed.

18.
Chemistry ; 20(11): 3010-3, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24470126

RESUMEN

Phenolic oxime and diethanolamine moieties have been combined into one organic framework, resulting in the formation of a novel ligand type that can be employed to construct a rare and unusual dodecametallic Mn wheel, within which nearest neighbours are coupled ferromagnetically.

19.
Inorg Chem ; 53(1): 257-68, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24350556

RESUMEN

The reaction of the in situ generated trinuclear triplesalen complex [(talent-Bu2)MnIII3(solv)n]3+ with (Ph4P)3[OsIII(CN)6] and NaClO4·H2O affords [MnIII6OsIII](ClO4)3 (= [{(talent-Bu2)MnIII3}2{OsIII(CN)6}](ClO4)3) in the presence of the oxidizing agent [(tacn)2NiIII](ClO4)3 (tacn =1,4,7-triazacyclononane), while the reaction of [(talent-Bu2)MnIII3(solv)n]3+ with K4[OsII(CN)6] and NaClO4·H2O yields [MnIII6OsII](ClO4)2 under an argon atmosphere. The molecular structure of [MnIII6OsIII]3+ as determined by single-crystal X-ray diffraction is closely related to the already published [MnIII6Mc]3+ complexes (Mc = CrIII, FeIII, CoIII, MnIII). The half-wave potential of the OsIII/OsII couple is E1/2 = 0.07 V vs Fc+/Fc. The FT-IR and electronic absorption spectra of [MnIII6OsII]2+ and [MnIII6OsIII]3+ exhibit distinct features of dicationic and tricationic [MnIII6Mc]n+ complexes, respectively. The dc magnetic data (µeff vs T, M vs B, and VTVH) of [MnIII6OsII]2+ are successfully simulated by a full-matrix diagonalization of a spin-Hamiltonian including isotropic exchange, zero-field splitting with full consideration of the relative orientation of the D-tensors, and Zeeman interaction, indicating antiferromagnetic MnIII­MnIII interactions within the trinuclear triplesalen subunits (JMn­Mn(1) = −(0.53 ± 0.01) cm­1, Hex = −2∑i

20.
Inorg Chem ; 53(6): 3032-8, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24627957

RESUMEN

Reaction of [Fe3(µ3-O)(O2C(t)Bu)6(HO2C(t)Bu)3](O2C(t)Bu) and [Ln2(O2C(t)Bu)6(HO2C(t)Bu)6] (Ln = lanthanide) with three different phosphonic acids produce a family of highly symmetrical {Fe6Ln6P6} clusters with general formula [Fe6Ln6(µ3-O)2(CO3)(O3PR)6(O2C(t)Bu)18], where R = methyl 1, phenyl 2, or n-hexyl 3. All the clusters present an analogous metal frame to the previously reported {Ni6Ln6P6} both being related to the well-known Wells-Dawson ion from polyoxometallate chemistry. These highly symmetrical clusters have, or approximate very closely to, D3d point symmetry. Both Fe(III) and Gd(III) ions are magnetically isotropic and could thus exhibit promising magnetocaloric properties; hence we investigated the {Fe6Gd6P6} compounds accordingly. Modeling the magnetic data of [Fe6Gd6(µ3-O)2(CO3)(O3PPh)6(O2C(t)Bu)18] by the finite-temperature Lanczos method gave a strong antiferromagnetic Fe···Fe interaction (J(Fe-Fe) = -30 cm(-1)) and very weak Gd···Gd and Gd···Fe exchange interactions (|J| < 0.1 cm(-1)). The strong antiferromagnetic Fe···Fe interaction could account for the relatively smaller -ΔSm value observed, compared against the {Ni6Gd6P6} analogues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA