Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 29(35): e202300196, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36999672

RESUMEN

Boronate esters formed by reaction of an oligonucleotide carrying a 5'-boronic acid moiety with the 3'-terminal cis-diol of another have been shown previously to assist assembly of fragmented DNAzymes. Here we demonstrate that boronate esters replacing the natural phosphodiester linkage at selected sites of two functional RNAs, the hairpin ribozyme and the Mango aptamer, allow assembly of functional structures. The hairpin ribozyme, a small naturally occurring RNA that supports the reversible cleavage of appropriate RNA substrates, is very sensitive to fragmentation. Splitting the ribozyme at four different sites led to a significant decrease or even loss of cleavage and ligation activity. Ribozymes assembled from fragments capable of boronate ester formation showed restoration of cleavage activity in some but not all cases, dependent on the split site. Ligation proved to be more challenging, no supportive effect of the boronate ester was observed. Split variants of the Mango aptamer also showed a dramatic loss of functionality, which however, was restored when 5'-boronic acid modified fragments were used for assembly. These studies show for the first time that boronate esters as internucleoside linkages can act as surrogates of natural phosphodiesters in functional RNA molecules.


Asunto(s)
Ácidos Borónicos , ARN Catalítico , Ácidos Borónicos/química , ARN Catalítico/química , ARN/química , Ésteres/química , Conformación de Ácido Nucleico
2.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-32612809

RESUMEN

Exonic circular RNAs (circRNAs) have been discovered in all kingdoms of life. In many cases, the details of circRNA function and their involvement in cellular processes and diseases are not yet fully understood. However, the past few years have seen significant developments in bioinformatics and in experimental protocols that advance the ongoing research in this still-emerging field. Sophisticated methods for circRNA generation in vitro and in vivo have been developed, allowing model studies into circRNA function and application. We here review the ongoing circRNA research, giving special attention to recent progress in the field.


Asunto(s)
Biología Computacional , ARN Circular/genética , Exones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA