RESUMEN
There is increasing evidence demonstrating that adult neural stem cells (NSCs) are a cell of origin of glioblastoma. Here we analyzed the interaction between transformed and wild-type NSCs isolated from the adult mouse subventricular zone niche. We found that transformed NSCs are refractory to quiescence-inducing signals. Unexpectedly, we also demonstrated that these cells induce quiescence in surrounding wild-type NSCs in a cell-cell contact and Notch signaling-dependent manner. Our findings therefore suggest that oncogenic mutations are propagated in the stem cell niche not just through cell-intrinsic advantages, but also by outcompeting neighboring stem cells through repression of their proliferation.
Asunto(s)
Glioblastoma/fisiopatología , Células Madre Neoplásicas/fisiología , Células-Madre Neurales/citología , Receptores Notch/genética , Transducción de Señal/fisiología , Animales , Comunicación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Ventrículos Laterales/citología , Ratones , Células Madre Neoplásicas/citología , Células-Madre Neurales/fisiologíaRESUMEN
BACKGROUND: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8+ T cells. METHODS: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the ß-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function. RESULTS: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a-/- mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8+ T cells. CONCLUSION: Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.
Asunto(s)
Reactividad Cruzada , Células Dendríticas/inmunología , Miocardio/patología , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/patología , Humanos , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/inmunología , Miocardio/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genéticaRESUMEN
Reducing infarct size (IS) by interfering with mechanisms for cardiomyocyte death remains an elusive goal. DMX-5804, a selective inhibitor of the stress-activated kinase MAP4K4, suppresses cell death in mouse myocardial infarction (MI), human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), and 3D human engineered heart tissue, whose fidelity to human biology is hoped to strengthen the route to clinical success. Here, DMX-10001, a soluble, rapidly cleaved pro-drug of DMX-5804, was developed for i.v. testing in large-mammal MI. Following pharmacodynamic studies, a randomized, blinded efficacy study was performed in swine subjected to LAD balloon occlusion (60 min) and reperfusion (24 h). Thirty-six animals were enrolled; 12 were excluded by pre-defined criteria, death before infusion, or technical issues. DMX-10001 was begun 20 min before reperfusion (30 min, 60 mg/kg/h; 23.5 h, 17 mg/kg/h). At all times tested, beginning 30 min after the start of infusion, DMX-5804 concentrations exceeded > fivefold the levels that rescued hPSC-CMs and reduced IS in mice after oral dosing with DMX-5804 itself. No significant reduction occurred in IS or no-reflow corrected for the area at ischemic risk, even though DMX-10001 reduced IS, expressed in grams or % of LV mass, by 27%. In summary, a rapidly cleaved pro-drug of DMX-5804 failed to reduce IS in large-mammal MI, despite exceeding the concentrations for proven success in both mice and hPSC-CMs.
Asunto(s)
Células Madre Pluripotentes Inducidas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Infarto del Miocardio/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Profármacos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Profármacos/farmacocinética , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Serina-Treonina Quinasas/metabolismo , Sus scrofa , Investigación Biomédica Traslacional , Función Ventricular Izquierda/efectos de los fármacosRESUMEN
The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.
Asunto(s)
Proteínas Relacionadas con la Folistatina/metabolismo , Miocardio/metabolismo , Pericardio/crecimiento & desarrollo , Pericardio/metabolismo , Regeneración , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Proteínas Relacionadas con la Folistatina/genética , Humanos , Masculino , Ratones , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Pericardio/citología , Pericardio/efectos de los fármacos , Ratas , Regeneración/efectos de los fármacos , Transducción de Señal , Porcinos , Transgenes/genéticaRESUMEN
In February 2016, The Company of Biologists hosted an intimate gathering of leading international researchers at the forefront of experimental cardiovascular regeneration, with its emphasis on 'Transdifferentiation and Tissue Plasticity in Cardiovascular Rejuvenation'. As I review here, participants at the workshop revealed how understanding cardiac growth and lineage decisions at their most fundamental level has transformed the strategies in hand that presently energize the prospects for human heart repair.
Asunto(s)
Transdiferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Corazón/crecimiento & desarrollo , Regeneración/fisiología , Trasplante de Células Madre/métodos , Animales , Corazón/fisiología , Humanos , Linfangiogénesis/fisiología , Miocitos Cardíacos/citología , Medicina Regenerativa , Células Madre/citologíaRESUMEN
The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart.
Asunto(s)
Corazón/embriología , Miocitos Cardíacos/fisiología , Regeneración/fisiología , Adulto , Animales , Células Madre Embrionarias/fisiología , Corazón/fisiología , Humanos , Modelos Biológicos , Miocardio/citología , Medicina Regenerativa/métodosRESUMEN
We describe an approach that enables the design of optical systems for optimal performance when built, i.e., when user-selected tolerances and compensators are taken into account. The approach does not require significant raytracing or computing time beyond what is used to optimize the nominal design. The approach uses nodal aberration theory to describe the effects of decentered optics; double Zernike polynomials to describe and quantify system performance; and an analytic approach to determining the necessary compensation and residual wavefront error due to a tolerance. We design a triplet using this approach and compare its Monte-Carlo-modeled as-built performance to that of a conventionally-optimized design which optimizes only nominal performance. We also describe several extensions to the theory.
RESUMEN
In preclinical studies, endothelin receptor A (ETA) antagonists (ETAi) attenuated the progression of heart failure (HF). However, clinical HF trials failed to demonstrate beneficial effects of ETAi. These conflicting data may be explained by the possibility that established HF drugs such as adrenergic receptor blockers interfered with the mechanism of ETAi action in clinical trials. Here we report that mice lacking ETA only in sympathetic neurons (SN-KO) showed less adverse structural remodeling and cardiac dysfunction in response to pathological pressure overload induced by transverse aortic constriction (TAC). In contrast, mice lacking ETA only in cardiomyocytes (CM-KO) were not protected. TAC led to a disturbed sympathetic nerve function as measured by cardiac norepinephrine (NE) tissue levels and [(124)I]-metaiodobenzylguanidine-PET, which was prevented in SN-KO. In a rat model of HF, ETAi improved cardiac and sympathetic nerve function. In cocultures of cardiomyocytes (CMs) and sympathetic neurons (SNs), endothelin-1 (ET1) led to a massive NE release and exaggerated CM hypertrophy compared with CM monocultures. ETA-deficient CMs gained a hypertrophic response through wild-type SNs, but ETA-deficient SNs failed to mediate exaggerated CM hypertrophy. Furthermore, ET1 mediated its effects indirectly via NE in CM-SN cocultures through adrenergic receptors and histone deacetylases, resulting in activation of the prohypertrophic transcription factor myocyte enhancer factor 2. In conclusion, sympathetic ETA amplifies ET1 effects on CMs through adrenergic signaling pathways. Thus, antiadrenergic therapies may blunt potentially beneficial effects of ETAi. Taken together, this may indicate that patients with ß blocker intolerance or disturbed sympathetic nerve function could be evaluated for a potential benefit from ETAi.
Asunto(s)
Miocitos Cardíacos/metabolismo , Receptor de Endotelina A/metabolismo , Sistema Nervioso Simpático/metabolismo , Remodelación Ventricular , Animales , Aorta/patología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Constricción Patológica , Modelos Animales de Enfermedad , Antagonistas de los Receptores de la Endotelina A/farmacología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Histona Desacetilasas/metabolismo , Técnicas In Vitro , Factores de Transcripción MEF2/metabolismo , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptores Adrenérgicos/metabolismo , Transducción de Señal/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacosRESUMEN
Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.
Asunto(s)
Cardiomegalia/genética , Cardiomegalia/metabolismo , Estrona/genética , Silenciador del Gen , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Cardiomegalia/complicaciones , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Línea Celular , Modelos Animales de Enfermedad , Activación Enzimática , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Recambio Mitocondrial , Tamaño de los Órganos/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Transducción de Señal , Sirolimus/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Función Ventricular/efectos de los fármacosRESUMEN
Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ÏIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair. In injured ÏIGF-1 CKO mouse muscle, accumulation of CD206+ macrophages was impaired, while an increase in Ly6C+ monocytes/macrophages was favored. Transcriptional profiling uncovered inflammatory skewing in ÏIGF-1 CKO macrophages, which failed to fully induce a reparative gene program in vitro or in vivo, revealing a novel autocrine role for IGF-1 in modulating murine macrophage phenotypes. These data establish local macrophage-derived IGF-1 as a key factor in inflammation resolution and macrophage polarization during muscle regeneration.
Asunto(s)
Factor I del Crecimiento Similar a la Insulina/biosíntesis , Músculo Esquelético/crecimiento & desarrollo , Regeneración/genética , Cicatrización de Heridas , Animales , Comunicación Autocrina/genética , Regulación del Desarrollo de la Expresión Génica , Inflamación/genética , Inflamación/patología , Factor I del Crecimiento Similar a la Insulina/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Monocitos/metabolismo , Músculo Esquelético/metabolismoRESUMEN
Heart failure is a leading cause of death in humans, and stress is increasingly associated with adverse cardiac outcomes. Glucocorticoids are primary stress hormones, but their direct role in cardiovascular health and disease is poorly understood. To determine the in vivo function of glucocorticoid signaling in the heart, we generated mice with cardiomyocyte-specific deletion of the glucocorticoid receptor (GR). These mice are born at the expected Mendelian ratio, but die prematurely from spontaneous cardiovascular disease. By 3 mo of age, mice deficient in cardiomyocyte GR display a marked reduction in left ventricular systolic function, as evidenced by decreases in ejection fraction and fractional shortening. Heart weight and left ventricular mass are elevated, and histology revealed cardiac hypertrophy without fibrosis. Removal of endogenous glucocorticoids and mineralocorticoids neither augmented nor lessened the hypertrophic response. Global gene expression analysis of knockout hearts before pathology onset revealed aberrant regulation of a large cohort of genes associated with cardiovascular disease as well as unique disease genes associated with inflammatory processes. Genes important for maintaining cardiac contractility, repressing cardiac hypertrophy, promoting cardiomyocyte survival, and inhibiting inflammation had decreased expression in the GR-deficient hearts. These findings demonstrate that a deficiency in cardiomyocyte glucocorticoid signaling leads to spontaneous cardiac hypertrophy, heart failure, and death, revealing an obligate role for GR in maintaining normal cardiovascular function. Moreover, our findings suggest that selective activation of cardiomyocyte GR may represent an approach for the prevention of heart disease.
Asunto(s)
Cardiomegalia/metabolismo , Cardiomegalia/prevención & control , Glucocorticoides/metabolismo , Mineralocorticoides/metabolismo , Miocardio/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/fisiología , Transducción de Señal , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Supervivencia Celular , Glucocorticoides/genética , Ratones , Ratones Noqueados , Mineralocorticoides/genética , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especificidad de Órganos/genética , Receptores de Glucocorticoides/genéticaRESUMEN
BACKGROUND: Ca(2+)-dependent signaling through CaM Kinase II (CaMKII) and calcineurin was suggested to contribute to adverse cardiac remodeling. However, the relative importance of CaMKII versus calcineurin for adverse cardiac remodeling remained unclear. METHODS AND RESULTS: We generated double-knockout mice (DKO) lacking the 2 cardiac CaMKII genes δ and γ specifically in cardiomyocytes. We show that both CaMKII isoforms contribute redundantly to phosphorylation not only of phospholamban, ryanodine receptor 2, and histone deacetylase 4, but also calcineurin. Under baseline conditions, DKO mice are viable and display neither abnormal Ca(2+) handling nor functional and structural changes. On pathological pressure overload and ß-adrenergic stimulation, DKO mice are protected against cardiac dysfunction and interstitial fibrosis. But surprisingly and paradoxically, DKO mice develop cardiac hypertrophy driven by excessive activation of endogenous calcineurin, which is associated with a lack of phosphorylation at the auto-inhibitory calcineurin A site Ser411. Likewise, calcineurin inhibition prevents cardiac hypertrophy in DKO. On exercise performance, DKO mice show an exaggeration of cardiac hypertrophy with increased expression of the calcineurin target gene RCAN1-4 but no signs of adverse cardiac remodeling. CONCLUSIONS: We established a mouse model in which CaMKII's activity is specifically and completely abolished. By the use of this model we show that CaMKII induces maladaptive cardiac remodeling while it inhibits calcineurin-dependent hypertrophy. These data suggest inhibition of CaMKII but not calcineurin as a promising approach to attenuate the progression of heart failure.
Asunto(s)
Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomegalia/metabolismo , Cardiomegalia/prevención & control , Miocardio/enzimología , Remodelación Ventricular/genética , Animales , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Condicionamiento Físico Animal/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Remodelación Ventricular/fisiologíaRESUMEN
Non-compensated dilated cardiomyopathy (DCM) leading to death from heart failure is rising rapidly in developed countries due to aging demographics, and there is a need for informative preclinical models to guide the development of effective therapeutic strategies to prevent or delay disease onset. In this study, we describe a novel model of heart failure based on cardiac-specific deletion of the prototypical mammalian BAR adapter-encoding gene Bin1, a modifier of age-associated disease. Bin1 deletion during embryonic development causes hypertrophic cardiomyopathy and neonatal lethality, but there is little information on how Bin1 affects cardiac function in adult animals. Here we report that cardiomyocyte-specific loss of Bin1 causes age-associated dilated cardiomyopathy (DCM) beginning by 8-10 months of age. Echocardiographic analysis showed that Bin1 loss caused a 45% reduction in ejection fraction during aging. Younger animals rapidly developed DCM if cardiac pressure overload was created by transverse aortic constriction. Heterozygotes exhibited an intermediate phenotype indicating Bin1 is haplo-insufficient to sustain normal heart function. Bin1 loss increased left ventricle (LV) volume and diameter during aging, but it did not alter LV volume or diameter in hearts from heterozygous mice nor did it affect LV mass. Bin1 loss increased interstitial fibrosis and mislocalization of the voltage-dependent calcium channel Cav 1.2, and the lipid raft scaffold protein caveolin-3, which normally complexes with Bin1 and Cav 1.2 in cardiomyocyte membranes. Our findings show how cardiac deficiency in Bin1 function causes age- and stress-associated heart failure, and they establish a new preclinical model of this terminal cardiac disease.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Envejecimiento/genética , Cardiomiopatía Dilatada/genética , Miocitos Cardíacos/patología , Proteínas del Tejido Nervioso/deficiencia , Proteínas Supresoras de Tumor/deficiencia , Animales , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Volumen SistólicoRESUMEN
Cardiac muscle differentiation in vivo is guided by sequential growth factor signals, including endoderm-derived diffusible factors, impinging on cardiogenic genes in the developing mesoderm. Previously, by RNA interference in AB2.2 mouse embryonic stem cells (mESCs), we identified the endodermal transcription factor Sox17 as essential for Mesp1 induction in primitive mesoderm and subsequent cardiac muscle differentiation. However, downstream effectors of Sox17 remained to be proven functionally. In this study, we used genome-wide profiling of Sox17-dependent genes in AB2.2 cells, RNA interference, chromatin immunoprecipitation, and luciferase reporter genes to dissect this pathway. Sox17 was required not only for Hhex (a second endodermal transcription factor) but also for Cer1, a growth factor inhibitor from endoderm that, like Hhex, controls mesoderm patterning in Xenopus toward a cardiac fate. Suppressing Hhex or Cer1 blocked cardiac myogenesis, although at a later stage than induction of Mesp1/2. Hhex was required but not sufficient for Cer1 expression. Over-expression of Sox17 induced endogenous Cer1 and sequence-specific transcription of a Cer1 reporter gene. Forced expression of Cer1 was sufficient to rescue cardiac differentiation in Hhex-deficient cells. Thus, Hhex and Cer1 are indispensable components of the Sox17 pathway for cardiopoiesis in mESCs, acting at a stage downstream from Mesp1/2.
Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Miocardio/metabolismo , Proteínas/metabolismo , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/genética , Citocinas , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma , Subunidades beta de Inhibinas/metabolismo , Mesodermo/citología , Ratones , Modelos Biológicos , Desarrollo de Músculos/genética , Miocardio/citología , Proteína Nodal/metabolismo , Unión Proteica/genética , Transducción de Señal/genéticaRESUMEN
Over the past 2 decades, cardiac regeneration has evolved from an exotic fringe of cardiovascular biology to the forefront of molecular, genetic, epigenetic, translational, and clinical investigations. The unmet patient need is the paucity of self-repair following infarction. Robust regeneration seen in models such as zebrafish and newborn mice has inspired the field, along with encouragement from modern methods that make even low levels of restorative growth discernible, changing the scientific and technical landscape for effective counter-measures. Approaches under study to augment cardiac repair complement each other, and encompass grafting cells of diverse kinds, restarting the cell cycle in post-mitotic ventricular myocytes, reprogramming non-myocytes, and exploiting the dormant progenitor/stem cells that lurk within the adult heart. The latter are the emphasis of the present review. Cardiac-resident stem cells (CSC) can be harvested from heart tissue, expanded, and delivered to the myocardium as a therapeutic product, whose benefits may be hoped to surpass those achieved in human trials of bone marrow. However, important questions are prompted by such cells' discovery. How do they benefit recipient hearts? Do they contribute, measurably, as an endogenous population, to self-repair? Even if "no," might CSCs be targets for activation in situ by growth factors and other developmental catalysts? And, what combination of distinguishing markers best demarcates the cells with robust clonal growth and cardiogenic potential?
Asunto(s)
Células Madre Adultas/citología , Mioblastos Cardíacos/citología , Adulto , Células Madre Adultas/fisiología , Células Madre Adultas/trasplante , Animales , Biomarcadores , Diferenciación Celular , Linaje de la Célula , Tratamiento Basado en Trasplante de Células y Tejidos , Perfilación de la Expresión Génica , Corazón/fisiología , Humanos , Ratones , Modelos Animales , Modelos Cardiovasculares , Mioblastos Cardíacos/fisiología , Mioblastos Cardíacos/trasplante , Regeneración/fisiología , Pez CebraRESUMEN
Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea) propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9), their inhibitors (TIMP-1 and TIMP-2), and collagen types (Col 1α1 and Col 1α3) in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.
Asunto(s)
Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Mieloides/metabolismo , Infarto del Miocardio/metabolismo , Animales , Antígenos Ly/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Ecocardiografía , Citometría de Flujo , Factor I del Crecimiento Similar a la Insulina/inmunología , Lectinas Tipo C/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Transgénicos , Monocitos/citología , Monocitos/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/metabolismo , Factores de TiempoRESUMEN
Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as ß-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-ß production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/fisiopatología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Western Blotting , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular , Células Cultivadas , Citocromos c/genética , Citocromos c/metabolismo , Electrocardiografía , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Técnicas para Inmunoenzimas , Integrasas , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
I present an estimator for the angular cross correlation of two tracers of the cosmological large-scale structure that utilizes redshift information to isolate separate physical contributions. The estimator is derived by solving the Limber equation for a reweighting of the foreground tracer that nulls either clustering or lensing contributions to the cross correlation function. Applied to future photometric surveys, the estimator can enhance the measurement of gravitational lensing magnification effects to provide a competitive independent constraint on the dark energy equation of state.
RESUMEN
RATIONALE: Cardiac tissue cohesion relying on highly ordered cardiomyocytes (CM) interactions is critical because most cardiomyopathies are associated with tissue remodeling and architecture alterations. OBJECTIVE: Eph/ephrin system constitutes a ubiquitous system coordinating cellular communications which recently emerged as a major regulator in adult organs. We examined if eph/ephrin could participate in cardiac tissue cyto-organization. METHODS AND RESULTS: We reported the expression of cardiac ephrin-B1 in both endothelial cells and for the first time in CMs where ephrin-B1 localized specifically at the lateral membrane. Ephrin-B1 knock-out (KO) mice progressively developed cardiac tissue disorganization with loss of adult CM rod-shape and sarcomeric and intercalated disk structural disorganization confirmed in CM-specific ephrin-B1 KO mice. CMs lateral membrane exhibited abnormal structure by electron microscopy and notably increased stiffness by atomic force microscopy. In wild-type CMs, ephrin-B1 interacted with claudin-5/ZO-1 complex at the lateral membrane, whereas the complex disappeared in KO/CM-specific ephrin-B1 KO mice. Ephrin-B1 deficiency resulted in decreased mRNA expression of CM basement membrane components and disorganized fibrillar collagen matrix, independently of classical integrin/dystroglycan system. KO/CM-specific ephrin-B1 KO mice exhibited increased left ventricle diameter and delayed atrioventricular conduction. Under pressure overload stress, KO mice were prone to death and exhibited striking tissue disorganization. Finally, failing CMs displayed downregulated ephrin-B1/claudin-5 gene expression linearly related to the ejection fraction. CONCLUSIONS: Ephrin-B1 is necessary for cardiac tissue architecture cohesion by stabilizing the adult CM morphology through regulation of its lateral membrane. Because decreased ephrin-B1 is associated with molecular/functional cardiac defects, it could represent a new actor in the transition toward heart failure.
Asunto(s)
Comunicación Celular/fisiología , Efrina-B1/fisiología , Proteínas de la Membrana/fisiología , Miocitos Cardíacos/fisiología , Animales , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Células Cultivadas , Colágeno/fisiología , Colágeno/ultraestructura , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Endotelio Vascular/ultraestructura , Efrina-B1/deficiencia , Efrina-B1/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Sarcómeros/diagnóstico por imagen , Sarcómeros/fisiología , UltrasonografíaRESUMEN
The tumor suppressor breast cancer susceptibility gene 2 (BRCA2) plays an important role in the repair of DNA damage, and loss of BRCA2 predisposes carriers to breast and ovarian cancers. Doxorubicin (DOX) remains the cornerstone of chemotherapy in such individuals. However, it is often associated with cardiac failure, which once manifests carries a poor prognosis. Because BRCA2 regulates genome-wide stability and facilitates DNA damage repair, we hypothesized that loss of BRCA2 may increase susceptibility to DOX-induced cardiac failure. To this aim, we generated cardiomyocyte-specific BRCA2 knock-out (CM-BRCA2(-/-)) mice using the Cre-loxP technology and evaluated their basal and post-DOX treatment phenotypes. Although CM-BRCA2(-/-) mice exhibited no basal cardiac phenotype, DOX treatment resulted in markedly greater cardiac dysfunction and mortality in CM-BRCA2(-/-) mice compared with control mice. Apoptosis in left ventricular (LV) sections from CM-BRCA2(-/-) mice compared with that in corresponding sections from wild-type (WT) littermate controls was also significantly enhanced after DOX treatment. Microscopic examination of LV sections from DOX-treated CM-BRCA2(-/-) mice revealed a greater number of DNA double-stranded breaks and the absence of RAD51 focus formation, an essential marker of double-stranded break repair. The levels of p53 and the p53-related proapoptotic proteins p53-up-regulated modulator of apoptosis (PUMA) and Bax were significantly increased in samples from CM-BRCA2(-/-) mice. This corresponded with increased Bax to Bcl-2 ratios and elevated cytochrome c release in the LV sections of DOX-treated CM-BRCA2(-/-) mice. Taken together, these data suggest a critical and previously unrecognized role of BRCA2 as a gatekeeper of DOX-induced cardiomyocyte apoptosis and susceptibility to overt cardiac failure. Pharmacogenomic studies evaluating cardiac function in BRCA2 mutation carriers treated with doxorubicin are encouraged.