Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38832735

RESUMEN

While the vibrational spectra of semi-rigid molecules can be computed on approaches relying on the Watson Hamiltonian, floppy molecules or molecular clusters are better described by Hamiltonians, which are capable of dealing with any curvilinear coordinates. It is the kinetic energy operator (KEO) of these Hamiltonians, which render the correlated calculations relying on them rather costly. Novel implementation of vibrational self-consistent field theory and vibrational configuration interaction theory on the basis of the Podolsky Hamiltonian are reported, in which the inverse of the metric tensor, i.e., the G matrix, is represented by an n-mode expansion expressed in terms of polynomials. An analysis of the importance of the individual terms of the KEO with respect to the truncation orders of the n-mode expansion is provided. Benchmark calculations have been performed for the cis-HOPO and methanimine, H2CNH, molecules and are compared to experimental data and to calculations based on the Watson Hamiltonian and the internal coordinate path Hamiltonian.

2.
J Comput Chem ; 44(3): 298-306, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35582830

RESUMEN

Aminoborane, H2 NBH2 and its isotopologues, H2 N10 BH2 , D2 NBD2 , and D2 N10 BD2 , have been studied by high-level ab initio methods. All calculations rely on multidimensional potential energy surfaces and dipole moment surfaces including high-order mode coupling terms, which have been obtained from electronic structure calculations at the level of explicitly correlated coupled-cluster theory, CCSD(T)-F12, or the distinguishable cluster approximation, DCSD. Subsequent vibrational structure calculations based on second-order vibrational perturbation theory, VPT2, and vibrational configuration interaction theory, VCI, were used to determine rotational constants, centrifugal distortion constants, vibrationally averaged geometrical parameters and (an)harmonic vibrational frequencies. The impact of core-correlation effects is discussed in detail. Rovibrational VCI calculations were used to simulate the gas phase spectra of these species and an in-depth analysis of the ν7 band of aminoborane is provided. Color-coding is used to reveal the identity of the individual progressions of the rovibrational transitions for this particular mode.

3.
J Chem Phys ; 158(14): 144118, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061506

RESUMEN

The positions of grid points for representing a multidimensional potential energy surface (PES) have a non-negligible impact on its accuracy and the associated computational effort for its generation. Six different positioning schemes were studied for PESs represented by n-mode expansions as needed for the accurate calculation of anharmonic vibrational frequencies by means of vibrational configuration interaction theory. A static approach, which has successfully been used in many applications, and five adaptive schemes based on Gaussian process regression have been investigated with respect to the number of necessary grid points and the accuracy of the fundamental modes for a small set of test molecules. A comparison with a related, more sophisticated, and consistent approach by Christiansen et al. is provided. The impact of the positions of the ab initio grid points is discussed for multilevel PESs, for which the computational effort of the individual electronic structure calculations decreases for increasing orders of the n-mode expansion. As a result of that, the ultimate goal is not the maximal reduction of grid points but rather the computational cost, which is not directly related.

5.
MAGMA ; 33(1): 177-195, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31676990

RESUMEN

OBJECTIVES: Standardization is an important milestone in the validation of DWI-based parameters as imaging biomarkers for renal disease. Here, we propose technical recommendations on three variants of renal DWI, monoexponential DWI, IVIM and DTI, as well as associated MRI biomarkers (ADC, D, D*, f, FA and MD) to aid ongoing international efforts on methodological harmonization. MATERIALS AND METHODS: Reported DWI biomarkers from 194 prior renal DWI studies were extracted and Pearson correlations between diffusion biomarkers and protocol parameters were computed. Based on the literature review, surveys were designed for the consensus building. Survey data were collected via Delphi consensus process on renal DWI preparation, acquisition, analysis, and reporting. Consensus was defined as ≥ 75% agreement. RESULTS: Correlations were observed between reported diffusion biomarkers and protocol parameters. Out of 87 survey questions, 57 achieved consensus resolution, while many of the remaining questions were resolved by preference (65-74% agreement). Summary of the literature and survey data as well as recommendations for the preparation, acquisition, processing and reporting of renal DWI were provided. DISCUSSION: The consensus-based technical recommendations for renal DWI aim to facilitate inter-site harmonization and increase clinical impact of the technique on a larger scale by setting a framework for acquisition protocols for future renal DWI studies. We anticipate an iterative process with continuous updating of the recommendations according to progress in the field.


Asunto(s)
Biomarcadores/metabolismo , Imagen de Difusión por Resonancia Magnética , Riñón/diagnóstico por imagen , Investigación Biomédica Traslacional , Algoritmos , Consenso , Técnica Delphi , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Riñón/metabolismo , Modelos Estadísticos , Movimiento (Física) , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
6.
Magn Reson Med ; 82(4): 1373-1384, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31131482

RESUMEN

PURPOSE: To systematically analyze intravoxel incoherent motion (IVIM) MRI in a perfusable capillary phantom closely matching the geometry of capillary beds in vivo and to compare the validity of the biexponential pseudo-diffusion and the recently introduced phase-distribution IVIM model. METHODS: IVIM-MRI was performed at 12 different flow rates ( 0.2⋯2.4mL/min ) in a capillary phantom using 4 different DW-MRI sequences (2 with monopolar and 2 with flow-compensated diffusion-gradient schemes, with up to 16b values between 0 and 800s/mm2 ). Resulting parameters from the assessed IVIM models were compared to results from optical microscopy. RESULTS: The acquired data were best described by a static and a flowing compartment modeled by the phase-distribution approach. The estimated signal fraction f of the flowing compartment stayed approximately constant over the applied flow rates, with an average of f=0.451±0.023 in excellent agreement with optical microscopy ( f=0.454±0.002 ). The estimated average particle flow speeds v=0.25⋯2.7mm/s showed a highly significant linear correlation to the applied flow. The estimated capillary segment length of approximately 189um agreed well with optical microscopy measurements. Using the biexponential model, the signal fraction f was substantially underestimated and displayed a strong dependence on the applied flow rate. CONCLUSION: The constructed phantom facilitated the detailed investigation of IVIM-MRI methods. The results demonstrate that the phase-distribution method is capable of accurately characterizing fluid flow inside a capillary network. Parameters estimated using the biexponential model, specifically the perfusion fraction f , showed a substantial bias because the model assumptions were not met by the underlying flow pattern.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Movimiento , Fantasmas de Imagen
7.
Magn Reson Med ; 82(4): 1312-1321, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31111551

RESUMEN

PURPOSE: To improve the robustness of pulmonary ventilation- and perfusion-weighted imaging with Fourier decomposition (FD) MRI in the presence of respiratory and cardiac frequency variations by replacing the standard fast Fourier transform with the more general nonuniform Fourier transform. THEORY AND METHODS: Dynamic coronal single-slice MRI of the thorax was performed in 11 patients and 5 healthy volunteers on a 1.5T whole-body scanner using a 2D ultra-fast balanced steady-state free-precession sequence with temporal resolutions of 4-9 images/s. For the proposed nonuniform Fourier-decomposition (NUFD) approach, the original signal with variable physiological frequencies that was acquired with constant sampling rate was retrospectively transformed into a signal with (ventilation or perfusion) frequency-adapted sampling rate. For that purpose, frequency tracking was performed with the synchro-squeezed wavelet transform. Ventilation- and perfusion-weighted NUFD amplitude and signal delay maps were generated and quantitatively compared with regularly sampled FD maps based on their signal-to-noise ratio (SNR). RESULTS: Volunteers and patients showed statistically significant increases of SNR in frequency-adapted NUFD results compared to regularly sampled FD results. For ventilation data, the mean SNR increased by 43.4%±25.3% and 24.4%±31.9% in volunteers and patients, respectively; for perfusion data, SNR increased by 93.0%±36.1% and 75.6%±62.8% . Two patients showed perfusion signal in pulmonary areas with NUFD that could not be imaged with FD. CONCLUSION: This study demonstrates that using nonuniform Fourier transform in combination with frequency tracking can significantly increase SNR and reduce frequency overlaps by collecting the signal intensity onto single frequency bins.


Asunto(s)
Análisis de Fourier , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Ventilación Pulmonar/fisiología , Relación Señal-Ruido
8.
Chemphyschem ; 19(10): 1234-1244, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29024244

RESUMEN

Physiological communication between neurons is dependent on the exchange of neurotransmitters at the synapses. Although this chemical signal transmission targets specific receptors and allows for subtle adaptation of the action potential, in vitro neuroscience typically relies on electrical currents and potentials to stimulate neurons. The electric stimulus is unspecific and the confinement of the stimuli within the media is technically difficult to control and introduces large artifacts in electric recordings of the activity. Here, we present a local chemical stimulation platform that resembles in vivo physiological conditions and can be used to target specific receptors of synapses. Neurotransmitters were dispensed using the force-controlled fluidic force microscope (FluidFM) nanopipette, which provides exact positioning and precise liquid delivery. We show that controlled release of the excitatory neurotransmitter glutamate induces spiking activity in primary rat hippocampal neurons, as measured by concurrent electrical and optical recordings using a microelectrode array and a calcium-sensitive dye, respectively. Furthermore, we characterized the glutamate dose response of neurons by applying stimulation pulses of glutamate with concentrations from 0 to 0.5 mm. This new stimulation approach, which combines FluidFM for gentle and precise positioning with a microelectrode array read-out, makes it possible to modulate the activity of individual neurons chemically and simultaneously record their induced activity across the entire neuronal network. The presented platform not only offers a more physiological alternative compared with electrical stimulation, but also provides the possibility to study the effects of the local application of neuromodulators and other drugs.


Asunto(s)
Neuronas/química , Animales , Células Cultivadas , Electrodos , Femenino , Microscopía de Fuerza Atómica/instrumentación , Neuronas/metabolismo , Ratas , Ratas Wistar , Estimulación Química
9.
Nephrol Dial Transplant ; 33(suppl_2): ii29-ii40, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137580

RESUMEN

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive method sensitive to local water motion in the tissue. As a tool to probe the microstructure, including the presence and potentially the degree of renal fibrosis, DWI has the potential to become an effective imaging biomarker. The aim of this review is to discuss the current status of renal DWI in diffuse renal diseases. DWI biomarkers can be classified in the following three main categories: (i) the apparent diffusion coefficient-an overall measure of water diffusion and microcirculation in the tissue; (ii) true diffusion, pseudodiffusion and flowing fraction-providing separate information on diffusion and perfusion or tubular flow; and (iii) fractional anisotropy-measuring the microstructural orientation. An overview of human studies applying renal DWI in diffuse pathologies is given, demonstrating not only the feasibility and intra-study reproducibility of DWI but also highlighting the need for standardization of methods, additional validation and qualification. The current and future role of renal DWI in clinical practice is reviewed, emphasizing its potential as a surrogate and monitoring biomarker for interstitial fibrosis in chronic kidney disease, as well as a surrogate biomarker for the inflammation in acute kidney diseases that may impact patient selection for renal biopsy in acute graft rejection. As part of the international COST (European Cooperation in Science and Technology) action PARENCHIMA (Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease), aimed at eliminating the barriers to the clinical use of functional renal magnetic resonance imaging, this article provides practical recommendations for future design of clinical studies and the use of renal DWI in clinical practice.


Asunto(s)
Biomarcadores/análisis , Imagen de Difusión por Resonancia Magnética/métodos , Riñón/patología , Guías de Práctica Clínica como Asunto/normas , Insuficiencia Renal Crónica/fisiopatología , Humanos
10.
Int J Hyperthermia ; 33(2): 178-190, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27592502

RESUMEN

PURPOSE: Doxorubicin (DOX)-loaded phosphatidyldiglycerol-based thermosensitive liposomes (DPPG2-TSL-DOX) combined with local hyperthermia (HT) was evaluated in cats with locally advanced spontaneous fibrosarcomas (soft tissue sarcoma [STS]). The study was designed to evaluate the safety and pharmacokinetic profile of the drug. Results from four dose-levels are reported. METHODS: Eleven client-owned cats with advanced STS were enrolled. Five cats received escalating doses of 0.1-0.4 mg/kg DOX (group I), three received 0.4 mg/kg constantly (group II) and three 0.6 mg/kg (group III) IV over 15 min. HT with a target temperature of 41.5 °C was started 15 min before drug application and continued for a total of 60 min. Six HT treatments were applied every other week using a radiofrequency applicator. Tumour growth was monitored by magnetic resonance imaging (MRI) and for dose level III also with 18F-FDG PET. RESULTS: Treatment was generally well tolerated and reasons for premature study termination in four cats were not associated with drug-induced toxicity. No DPPG2-TSL-DOX based hypersensitivity reaction was observed. One cat showed simultaneous partial response (PR) in MRI and positron emission tomography (PET) whereas one cat showed stable disease in MRI and PR in PET (both cats in dose level III). Pharmacokinetic measurements demonstrated DOX release triggered by HT. CONCLUSION: DPPG2-TSL-DOX + HT is a promising treatment option for advanced feline STS by means of targeted drug delivery. As MTD was not reached further investigation is warranted to determine if higher doses would result in even better tumour responses.

11.
Eur Radiol ; 25(10): 2937-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25820479

RESUMEN

OBJECTIVES: We aimed to develop and evaluate a new method that reliably differentiates between cerebral arteries and veins using voxel-wise CT-perfusion-derived parameters. MATERIALS AND METHODS: Fourteen consecutive patients with suspected stroke but without pathological findings were examined on a multi-detector CT system: 32 dynamic phases (∆t = 1.5 s) during application of 35 mL iomeprol-350 were acquired at 80 kV/200mAs. Three hemodynamic parameters were calculated for 18 arterial and venous vessel segments: A (maximum of the time-density-curve), T (time-to-peak), and W (full-width-at-half-maximum). Using receiver operator characteristic (ROC) curve analysis and Fisher's linear discriminant analysis (FLDA), the performance of every classifier (A, T, W) and of all linear combinations for the differentiation of arterial and venous vessels was determined. RESULTS: A maximum area under the ROC-curve (AUC) of 0.945 (accuracy = 86.8%) was obtained using the FLDA combination of A&T or the triplet FLDA of A&T&W for the classification of venous and arterial vessels. The best single parameter was T with an AUC of 0.871 (accuracy = 79.0%), which performed significantly worse than the combination A&T (p < 0.001). CONCLUSIONS: Arteries and veins can be accurately differentiated based on dynamic CT perfusion data using the maximum of the time-density curve, its time-to-peak, its width, and FLDA combinations of these parameters, which yield accuracies up to 87%. KEY POINTS: • For classification of cerebral vasculature, time-to-peak has the best single-parameter accuracy. • Fisher's linear discriminant analysis improves the performance of the individual classifiers. • Combining signal maximum and time-to-peak parameters significantly increased the classifying potential. • Pre-processing of time-density-curves by Gaussian filtering or fitting can improve diagnostic accuracy.


Asunto(s)
Arterias Cerebrales/diagnóstico por imagen , Venas Cerebrales/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Arterias Cerebrales/fisiología , Venas Cerebrales/fisiología , Medios de Contraste , Femenino , Hemodinámica/fisiología , Humanos , Yopamidol/análogos & derivados , Masculino , Persona de Mediana Edad , Flebografía/métodos , Curva ROC , Adulto Joven
12.
Phys Imaging Radiat Oncol ; 29: 100561, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38463218

RESUMEN

Background and purpose: For dosimetry in magnetic resonance (MR) guided radiotherapy, assessing the magnetic field correction factors of air-vented ionization chambers is crucial. Novel MR-optimized chambers reduce MR-imaging artefacts, enhancing their quality assurance utility. This study aimed to characterize two new MR-optimized ionization chambers with sensitive volumes of 0.07 and 0.016 cm3 regarding magnetic field correction factors and intra-type variation and compare them to their conventional counterparts. Material and methods: Five chambers of each type were evaluated in a water phantom, using a clinical linear accelerator and an electromagnet, as well as a 1.5 T MR-linac system. The magnetic field correction factor kB→,Q, addressing the change of response caused by a magnetic field, was assessed together with its intra-type variation. MR-optimized and conventional chambers were compared using a Mann-Whitney U-Test. Results: Considering 1.5 T and a perpendicular chamber orientation, we observed significant differences in the magnetic field-induced change in chamber reading between the two 0.016 cm3 chamber versions (p = 0.03). For a 7 MV beam, MR-optimized chambers (0.016/0.07 cm3) showed kB→,Q values of 1.0426(66) and 1.0463(44), compared to 1.0319(53) and 1.0480(41) of their conventional counterparts. In anti-parallel orientation, kB→,Q was 1.0012(69) and 0.9863(49) for the MR-optimized chambers. The average intra-type variation of kB→,Q over all chamber types was 0.3%. Conclusion: Magnetic field correction factors were successfully determined for four ionization chamber types, including two new MR-optimized versions, allowing their use in MR-linac absolute dosimetry. Evaluation of the intra-type variation enabled the assessment of their contribution to the uncertainty of tabulated kB→,Q.

13.
Phys Med Biol ; 69(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38537301

RESUMEN

Thein vivoevolution of radiotherapy necessitates innovative platforms for preclinical investigation, bridging the gap between bench research and clinical applications. Understanding the nuances of radiation response, specifically tailored to proton and photon therapies, is critical for optimizing treatment outcomes. Within this context, preclinicalin vivoexperimental setups incorporating image guidance for both photon and proton therapies are pivotal, enabling the translation of findings from small animal models to clinical settings. TheSAPPHIREproject represents a milestone in this pursuit, presenting the installation of the small animal radiation therapy integrated beamline (SmART+ IB, Precision X-Ray Inc., Madison, Connecticut, USA) designed for preclinical image-guided proton and photon therapy experiments at University Proton Therapy Dresden. Through Monte Carlo simulations, low-dose on-site cone beam computed tomography imaging and quality assurance alignment protocols, the project ensures the safe and precise application of radiation, crucial for replicating clinical scenarios in small animal models. The creation of Hounsfield lookup tables and comprehensive proton and photon beam characterizations within this system enable accurate dose calculations, allowing for targeted and controlled comparison experiments. By integrating these capabilities,SAPPHIREbridges preclinical investigations and potential clinical applications, offering a platform for translational radiobiology research and cancer therapy advancements.


Asunto(s)
Fotones , Terapia de Protones , Radioterapia Guiada por Imagen , Fotones/uso terapéutico , Animales , Radioterapia Guiada por Imagen/métodos , Terapia de Protones/métodos , Método de Montecarlo , Protones , Ratones
14.
Curr Oncol ; 31(5): 2679-2688, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38785484

RESUMEN

The use of hypofractionated radiotherapy in prostate cancer has been increasingly evaluated, whereas accumulated evidence demonstrates comparable oncologic outcomes and toxicity rates compared to normofractionated radiotherapy. In this prospective study, we evaluate all patients with intermediate-risk prostate cancer treated with ultrahypofractionated (UHF) MRI-guided radiotherapy on a 1.5 T MR-Linac within our department and report on workflow and feasibility, as well as physician-recorded and patient-reported longitudinal toxicity. A total of 23 patients with intermediate-risk prostate cancer treated on the 1.5 T MR-Linac with a dose of 42.7 Gy in seven fractions (seven MV step-and-shoot IMRT) were evaluated within the MRL-01 study (NCT04172753). The duration of each treatment step, choice of workflow (adapt to shape-ATS or adapt to position-ATP) and technical and/or patient-sided treatment failure were recorded for each fraction and patient. Acute and late toxicity were scored according to RTOG and CTC V4.0, as well as the use of patient-reported questionnaires. The median follow-up was 12.4 months. All patients completed the planned treatment. The mean duration of a treatment session was 38.2 min. In total, 165 radiotherapy fractions were delivered. ATS was performed in 150 fractions, 5 fractions were delivered using ATP, and 10 fractions were delivered using both ATS and ATP workflows. Severe acute bother (G3+) regarding IPS-score was reported in five patients (23%) at the end of radiotherapy. However, this tended to normalize and no G3+ IPS-score was observed later at any point during follow-up. Furthermore, no other severe genitourinary (GU) or gastrointestinal (GI) acute or late toxicity was observed. One-year biochemical-free recurrence survival was 100%. We report the excellent feasibility of UHF MR-guided radiotherapy for intermediate-risk prostate cancer patients and acceptable toxicity rates in our preliminary study. Randomized controlled studies with long-term follow-up are warranted to detect possible advantages over current state-of-the-art RT techniques.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Estudios Prospectivos , Anciano , Radioterapia Guiada por Imagen/métodos , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Hipofraccionamiento de la Dosis de Radiación , Anciano de 80 o más Años
15.
Radiat Oncol ; 18(1): 58, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013541

RESUMEN

BACKGROUND: Hybrid devices that combine radiation therapy and MR-imaging have been introduced in the clinical routine for the treatment of lung cancer. This opened up not only possibilities in terms of accurate tumor tracking, dose delivery and adapted treatment planning, but also functional lung imaging. The aim of this study was to show the feasibility of Non-uniform Fourier Decomposition (NuFD) MRI at a 0.35 T MR-Linac as a potential treatment response assessment tool, and propose two signal normalization strategies for enhancing the reproducibility of the results. METHODS: Ten healthy volunteers (median age 28 ± 8 years, five female, five male) were repeatedly scanned at a 0.35 T MR-Linac using an optimized 2D+t balanced steady-state free precession (bSSFP) sequence for two coronal slice positions. Image series were acquired in normal free breathing with breaks inside and outside the scanner as well as deep and shallow breathing. Ventilation- and perfusion-weighted maps were generated for each image series using NuFD. For intra-volunteer ventilation map reproducibility, a normalization factor was defined based on the linear correlation of the ventilation signal and diaphragm position of each scan as well as the diaphragm motion amplitude of a reference scan. This allowed for the correction of signal dependency on the diaphragm motion amplitude, which varies with breathing patterns. The second strategy, which can be used for ventilation and perfusion, eliminates the dependency on the signal amplitude by normalizing the ventilation/perfusion maps with the average ventilation/perfusion signal within a selected region-of-interest (ROI). The position and size dependency of this ROI was analyzed. To evaluate the performance of both approaches, the normalized ventilation/perfusion-weighted maps were compared and the deviation of the mean ventilation/perfusion signal from the reference was calculated for each scan. Wilcoxon signed-rank tests were performed to test whether the normalization methods can significantly improve the reproducibility of the ventilation/perfusion maps. RESULTS: The ventilation- and perfusion-weighted maps generated with the NuFD algorithm demonstrated a mostly homogenous distribution of signal intensity as expected for healthy volunteers regardless of the breathing maneuver and slice position. Evaluation of the ROI's size and position dependency showed small differences in the performance. Applying both normalization strategies improved the reproducibility of the ventilation by reducing the median deviation of all scans to 9.1%, 5.7% and 8.6% for the diaphragm-based, the best and worst performing ROI-based normalization, respectively, compared to 29.5% for the non-normalized scans. The significance of this improvement was confirmed by the Wilcoxon signed rank test with [Formula: see text] at [Formula: see text]. A comparison of the techniques against each other revealed a significant difference in the performance between best ROI-based normalization and worst ROI ([Formula: see text]) and between best ROI-based normalization and scaling factor ([Formula: see text]), but not between scaling factor and worst ROI ([Formula: see text]). Using the ROI-based approach for the perfusion-maps, the uncorrected deviation of 10.2% was reduced to 5.3%, which was shown to be significant ([Formula: see text]). CONCLUSIONS: Using NuFD for non-contrast enhanced functional lung MRI at a 0.35 T MR-Linac is feasible and produces plausible ventilation- and perfusion-weighted maps for volunteers without history of chronic pulmonary diseases utilizing different breathing patterns. The reproducibility of the results in repeated scans significantly benefits from the introduction of the two normalization strategies, making NuFD a potential candidate for fast and robust early treatment response assessment of lung cancer patients during MR-guided radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Imagen por Resonancia Magnética , Imagen de Perfusión , Humanos , Estudios de Factibilidad , Reproducibilidad de los Resultados , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Ventilación , Pulmón/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Respiración
16.
Radiother Oncol ; 182: 109591, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36858201

RESUMEN

Comprehending cellular changes of radiation-induced brain injury is crucial to prevent and treat the pathology. We provide a unique open dataset of proton-irradiated mouse brains consisting of medical imaging, radiation dose simulations, and large-scale microscopy images, all registered into a common coordinate system. This allows dose-dependent analyses on single-cell level.


Asunto(s)
Lesiones Encefálicas , Traumatismos por Radiación , Ratones , Animales , Microscopía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Traumatismos por Radiación/prevención & control , Radiografía , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/etiología
17.
Contemp Clin Trials ; 134: 107352, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37802221

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios de Cohortes , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Biomarcadores
18.
Artículo en Inglés | MEDLINE | ID: mdl-35329328

RESUMEN

Artificial intelligence can be used to realise new types of protective devices and assistance systems, so their importance for occupational safety and health is continuously increasing. However, established risk mitigation measures in software development are only partially suitable for applications in AI systems, which only create new sources of risk. Risk management for systems that for systems using AI must therefore be adapted to the new problems. This work objects to contribute hereto by identifying relevant sources of risk for AI systems. For this purpose, the differences between AI systems, especially those based on modern machine learning methods, and classical software were analysed, and the current research fields of trustworthy AI were evaluated. On this basis, a taxonomy could be created that provides an overview of various AI-specific sources of risk. These new sources of risk should be taken into account in the overall risk assessment of a system based on AI technologies, examined for their criticality and managed accordingly at an early stage to prevent a later system failure.


Asunto(s)
Inteligencia Artificial , Salud Laboral , Aprendizaje Automático , Programas Informáticos , Tecnología
19.
Front Oncol ; 12: 982417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419890

RESUMEN

Background and purpose: Proton therapy has become a popular treatment modality in the field of radiooncology due to higher spatial dose conformity compared to conventional radiotherapy, which holds the potential to spare normal tissue. Nevertheless, unresolved research questions, such as the much debated relative biological effectiveness (RBE) of protons, call for preclinical research, especially regarding in vivo studies. To mimic clinical workflows, high-precision small animal irradiation setups with image-guidance are needed. Material and methods: A preclinical experimental setup for small animal brain irradiation using proton radiographies was established to perform planning, repositioning, and irradiation of mice. The image quality of proton radiographies was optimized regarding the resolution, contrast-to-noise ratio (CNR), and minimal dose deposition in the animal. Subsequently, proof-of-concept histological analysis was conducted by staining for DNA double-strand breaks that were then correlated to the delivered dose. Results: The developed setup and workflow allow precise brain irradiation with a lateral target positioning accuracy of<0.26mm for in vivo experiments at minimal imaging dose of<23mGy per mouse. The custom-made software for image registration enables the fast and precise animal positioning at the beam with low observer-variability. DNA damage staining validated the successful positioning and irradiation of the mouse hippocampus. Conclusion: Proton radiography enables fast and effective high-precision lateral alignment of proton beam and target volume in mouse irradiation experiments with limited dose exposure. In the future, this will enable irradiation of larger animal cohorts as well as fractionated proton irradiation.

20.
Med Phys ; 48(8): 4148-4159, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34032301

RESUMEN

PURPOSE: The implementation of volumetric in-room imaging for online adaptive radiotherapy makes extensive testing of this image data for treatment planning necessary. Especially for proton beams the higher sensitivity to stopping power properties of the tissue results in more stringent requirements. Current approaches mainly focus on recalculation of the plans on the new image data, lacking experimental verification, and ignoring the impact on the plan re-optimization process. The aim of this study was to use gel and film dosimetry coupled with a three-dimensional (3D) printed head phantom (based on the planning CT of the patient) for 3D range verification of intensity-corrected cone beam computed tomography (CBCT) image data for adaptive proton therapy. METHODS: Single field uniform dose pencil beam scanning proton plans were optimized for three different patients on the patients' planning CT (planCT) and the patients' intensity-corrected CBCT (scCBCT) for the same target volume using the same optimization constraints. The CBCTs were corrected on projection level using the planCT as a prior. The dose optimized on planCT and recalculated on scCBCT was compared in terms of proton range differences (80% distal fall-off, recalculation). Moreover, the dose distribution resulting from recalculation of the scCBCT-optimized plan on the planCT and the original planCT dose distribution were compared (simulation). Finally, the two plans of each patient were irradiated on the corresponding patient-specific 3D printed head phantom using gel dosimetry inserts for one patient and film dosimetry for all three patients. Range differences were extracted from the measured dose distributions. The measured and the simulated range differences were corrected for range differences originating from the initial plans and evaluated. RESULTS: The simulation approach showed high agreement with the standard recalculation approach. The median values of the range differences of these two methods agreed within 0.1 mm and the interquartile ranges (IQRs) within 0.3 mm for all three patients. The range differences of the film measurement were accurately matching with the simulation approach in the film plane. The median values of these range differences deviated less than 0.1 mm and the IQRs less than 0.4 mm. For the full 3D evaluation of the gel range differences, the median value and IQR matched those of the simulation approach within 0.7 and 0.5 mm, respectively. scCBCT- and planCT-based dose distributions were found to have a range agreement better than 3 mm (median and IQR) for all considered scenarios (recalculation, simulation, and measurement). CONCLUSIONS: The results of this initial study indicate that an online adaptive proton workflow based on scatter-corrected CBCT image data for head irradiations is feasible. The novel presented measurement- and simulation-based method was shown to be equivalent to the standard literature recalculation approach. Additionally, it has the capability to catch effects of image differences on the treatment plan optimization. This makes the measurement-based approach particularly interesting for quality assurance of CBCT-based online adaptive proton therapy. The observed uncertainties could be kept within those of the registration and positioning. The proposed validation could also be applied for other alternative in-room images, e.g. for MR-based pseudoCTs.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Tomografía Computarizada de Haz Cónico Espiral , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA