Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioorg Med Chem Lett ; 29(16): 2224-2228, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31248774

RESUMEN

This letter describes progress towards an M4 PAM preclinical candidate inspired by an unexpected aldehyde oxidase (AO) metabolite of a novel, CNS penetrant thieno[2,3-c]pyridine core to an equipotent, non-CNS penetrant thieno[2,3-c]pyrdin-7(6H)-one core. Medicinal chemistry design efforts yielded two novel tricyclic cores that enhanced M4 PAM potency, regained CNS penetration, displayed favorable DMPK properties and afforded robust in vivo efficacy in reversing amphetamine-induced hyperlocomotion in rats.


Asunto(s)
Aldehído Oxidasa/metabolismo , Miotonía Congénita/metabolismo , Receptor Muscarínico M4/metabolismo , Animales , Descubrimiento de Drogas , Humanos , Ratas , Relación Estructura-Actividad
2.
Ann Hum Genet ; 76(6): 448-53, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22943764

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment and is the leading cause of dementia in the elderly. A number of genome wide association studies and subsequent replication studies have been published recently on late onset AD (LOAD). These studies identified several new susceptibility genes including phosphatidylinositol-binding clathrin assembly protein (PICALM) on chromosome 11. The aim of our study was to examine the entire coding sequence of PICALM to determine if the association could be explained by any previously undetected sequence variation. Therefore, we sequenced 48 cases and 48 controls homozygous for the risk allele in the signal SNP rs3851179. We did not find any new variants; however, rs592297, a known coding synonymous SNP that is part of an exonic splice enhancer region in exon 5, is in strong linkage disequilibrium with rs3851179 and should be examined for functional significance in Alzheimer pathophysiology.


Asunto(s)
Enfermedad de Alzheimer/genética , Exones , Proteínas de Ensamble de Clatrina Monoméricas/genética , Polimorfismo de Nucleótido Simple , Empalme del ARN , Secuencias Reguladoras de Ácido Ribonucleico , Anciano , Secuencia de Bases , Biología Computacional/métodos , Orden Génico , Predisposición Genética a la Enfermedad , Humanos , Desequilibrio de Ligamiento , Persona de Mediana Edad , Datos de Secuencia Molecular
3.
J Med Chem ; 65(8): 6273-6286, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35417155

RESUMEN

The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) represents a novel potential target for the treatment of multiple addictive disorders, including opioid use disorder. Through chemical optimization of several functional high-throughput screening hits, VU6019650 (27b) was identified as a novel M5 orthosteric antagonist with high potency (human M5 IC50 = 36 nM), M5 subtype selectivity (>100-fold selectivity against human M1-4) and favorable physicochemical properties for systemic dosing in preclinical addiction models. In acute brain slice electrophysiology studies, 27b blocked the nonselective muscarinic agonist oxotremorine-M-induced increases in neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area, a part of the mesolimbic dopaminergic reward circuitry. Moreover, 27b also inhibited oxycodone self-administration in male Sprague-Dawley rats within a dose range that did not impair general motor output.


Asunto(s)
Trastornos Relacionados con Opioides , Receptor Muscarínico M5 , Animales , Neuronas Dopaminérgicas , Masculino , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M1 , Receptores Muscarínicos
4.
Chem Res Toxicol ; 21(7): 1348-58, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18549249

RESUMEN

The conformation of the 1 R,2 S,3 R,4 S-benzo[ c]phenanthrene- N (2)-dG adduct, arising from trans opening of the (+)-1 S,2 R,3 R,4 S- anti-benzo[ c]phenanthrene diol epoxide, was examined in 5'- d(ATCGC XCGGCATG)-3'.5'-d(CATGCCG CGCGAT)-3', where X = 1 R,2 S,3 R,4 S-B[ c]P- N (2)-dG. This duplex, derived from the hisD3052 frameshift tester strain of Salmonella typhimurium, contains a (CG) 3 iterated repeat, a hotspot for frameshift mutagenesis. NMR experiments showed a disconnection in sequential NOE connectivity between X (4) and C (5), and in the complementary strand, they showed another disconnection between G (18) and C (19). In the imino region of the (1)H NMR spectrum, a resonance was observed at the adducted base pair X (4) x C (19). The X (4) N1H and G (18) N1H resonances shifted upfield as compared to the other guanine imino proton resonances. NOEs were observed between X (4) N1H and C (19) N (4)H and between C (5) N (4)H and G (18) N1H, indicating that base pairs X (4) x C (19) and C (5) x G (18) maintained Watson-Crick hydrogen bonding. No NOE connectivity was observed between X (4) and G (18) in the imino region of the spectrum. Chemical shift perturbations of greater than 0.1 ppm were localized at nucleotides X (4) and C (5) in the modified strand and G (18) and C (19) in the complementary strand. A total of 13 NOEs between the protons of the 1 R-B[ c]Ph moiety and the DNA were observed between B[ c]Ph and major groove aromatic or amine protons at base pairs X (4) x C (19) and 3'-neighbor C (5) x G (18). Structural refinement was achieved using molecular dynamics calculations restrained by interproton distances and torsion angle restraints obtained from NMR data. The B[ c]Ph moiety intercalated on the 3'-face of the X (4) x C (19) base pair such that the terminal ring of 1 R-B[ c]Ph threaded the duplex and faced into the major groove. The torsion angle alpha' [X (4)]-N3-C2-N2-B[ c]Ph]-C1 was calculated to be -177 degrees, maintaining an orientation in which the X (4) exocyclic amine remained in plane with the purine. The torsion angle beta' [X (4)]-C2-N2-[B[ c]Ph]-C1-C2 was calculated to be 75 degrees. This value governed the 3'-orientation of the B[ c]Ph moiety with respect to X (4). The helical rise between base pairs X (4) x C (19) and C (5) x G (18) increased and resulted in unwinding of the right-handed helix. The aromatic rings of the B[ c]Ph moiety were below the Watson-Crick hydrogen-bonding face of the modified base pair X (4) x C (19). The B[c]Ph moiety was stacked above nucleotide G (18), in the complementary strand.


Asunto(s)
Islas de CpG , Aductos de ADN/química , ADN/química , Sustancias Intercalantes/química , Mutágenos/química , Fenantrenos/química , Eliminación de Secuencia , Genes Bacterianos/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
5.
Chem Res Toxicol ; 20(8): 1200-10, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17645303

RESUMEN

The OPdG adduct N (2)-(3-oxo-1-propenyl)dG, formed in DNA exposed to malondialdehyde, was introduced into 5'-d(ATCGC XCGGCATG)-3'.5'-d(CATGCCGCGAT)-3' at pH 7 (X = OPdG). The OPdG adduct is the base-catalyzed rearrangement product of the M 1dG adduct, 3-(beta- d-ribofuranosyl)pyrimido[1,2- a]purin-10(3 H)-one. This duplex, named the OPdG-2BD oligodeoxynucleotide, was derived from a frameshift hotspot of the Salmonella typhimuium hisD3052 gene and contained a two-base deletion in the complementary strand. NMR spectroscopy revealed that the OPdG-2BD oligodeoxynucleotide underwent rapid bulge migration. This hindered its conversion to the M 1dG-2BD duplex, in which the bulge was localized and consisted of the M 1dG adduct and the 3'-neighbor dC [ Schnetz-Boutaud, N. C. , Saleh, S. , Marnett, L. J. , and Stone, M. P. ( 2001) Biochemistry 40, 15638- 15649 ]. The spectroscopic data suggested that bulge migration transiently positioned OPdG opposite dC in the complementary strand, hindering formation of the M 1dG-2BD duplex, or alternatively, reverting rapidly formed intermediates in the OPdG to M 1dG reaction pathway when dC was placed opposite from OPdG. The approach of initially formed M 1dG-2BD or OPdG-2BD duplexes to an equilibrium mixture of the M 1dG-2BD and OPdG-2BD duplexes was monitored as a function of time, using NMR spectroscopy. Both samples attained equilibrium in approximately 140 days at pH 7 and 25 degrees C.


Asunto(s)
Islas de CpG/genética , Aductos de ADN/química , Desoxiguanosina/análogos & derivados , Mutación del Sistema de Lectura/genética , Histidina/genética , Malondialdehído/análogos & derivados , Salmonella typhimurium/genética , Emparejamiento Base , Aductos de ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Desoxiguanosina/química , Desoxiguanosina/genética , Genes Bacterianos/genética , Espectroscopía de Resonancia Magnética , Factores de Tiempo
6.
Chem Res Toxicol ; 15(5): 638-47, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12018984

RESUMEN

The structure of the cationic 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B(1) adduct embedded in a 5'-CpG-3' sequence context and paired with deoxycytosine in the oligodeoxynucleotide d(ACATC(AFB)GATCT) x d(AGATCGATGT) was refined using molecular dynamics calculations restrained by NOE data and dihedral angle restraints obtained from NMR data. The aflatoxin moiety intercalated above the 5' face of the modified guanine. It stacked between C(5) x G(16) and (AFB)G(6) x C(15). The AFB(1) H5, OCH(3), and methylene protons faced into the minor groove, with the methylene protons oriented between the C(15) and G(16) nucleobases. The aflatoxin B(1) H6a, H8, H9, and H9a protons faced the major groove, with H6a and H9a pointing toward the 5' direction from the lesion site. The refined structure was compared to the structure of the aflatoxin B(1) adduct embedded in a 5'-ATGCAT-3' sequence in the oligodeoxynucleotide d(TAT(AFB)GCATA)(2) [Jones, W. R., Johnston, D. S., and Stone, M. P. (1998) Chem. Res. Toxicol.11, 873-881]. The structure of the intercalated aflatoxin B(1) lesion in the ATC(AFB)GAT sequence is similar to its structure in the d(AT(AFB)GCAT) sequence. This is consistent with a mechanism in which the precovalent intercalation of aflatoxin-8,9-exo-epoxide on the 5' face of guanine places the epoxide in close proximity and in the proper orientation to the N7 position of guanine, thus facilitating an S(N)2 reaction. The data provides additional insight into the nature of the disruption of the B-DNA duplex induced by aflatoxin B(1) intercalation. Overall, the results suggest that sequence contributes a minor role in modulating the structure of the cationic guanine N7 AFB(1) lesion in duplex DNA. On the other hand, structural differences are observed when the correctly paired structure is compared to the structure of the cationic AFB(1) adduct mispaired with dA [Giri, I., Johnston, D. S., and Stone, M. P. (2002) Biochemistry 41, 5462-5472].


Asunto(s)
Aflatoxina B1/química , Modelos Moleculares , Oligodesoxirribonucleótidos/química , Aflatoxina B1/análogos & derivados , Conformación Molecular , Oligodesoxirribonucleótidos/síntesis química , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA