Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Neurosci ; 11(7): 816-22, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536711

RESUMEN

Most seizures stop spontaneously; however, the molecular mechanisms that terminate seizures remain unknown. Observations that seizures reduced brain pH and that acidosis inhibited seizures indicate that acidosis halts epileptic activity. Because acid-sensing ion channel 1a (ASIC1a) is exquisitely sensitive to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a, which would terminate seizures. Disrupting mouse ASIC1a increased the severity of chemoconvulsant-induced seizures, whereas overexpressing ASIC1a had the opposite effect. ASIC1a did not affect seizure threshold or onset, but shortened seizure duration and prevented seizure progression. CO2 inhalation, long known to lower brain pH and inhibit seizures, required ASIC1a to interrupt tonic-clonic seizures. Acidosis activated inhibitory interneurons through ASIC1a, suggesting that ASIC1a might limit seizures by increasing inhibitory tone. Our results identify ASIC1a as an important element in seizure termination when brain pH falls and suggest both a molecular mechanism for how the brain stops seizures and new therapeutic strategies.


Asunto(s)
Acidosis/fisiopatología , Proteínas del Tejido Nervioso/fisiología , Convulsiones/terapia , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Acidosis/inducido químicamente , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal , Dióxido de Carbono/administración & dosificación , Electroencefalografía/métodos , Femenino , Hipocampo/patología , Concentración de Iones de Hidrógeno , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Ácido Kaínico , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Técnicas de Placa-Clamp/métodos , Pentilenotetrazol , Picrotoxina , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/patología , Canales de Sodio/deficiencia , Factores de Tiempo
2.
J Neurosci ; 29(17): 5381-8, 2009 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-19403806

RESUMEN

No animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments. Here, we used several of these models to test the hypothesis that the acid-sensing ion channel-1a (ASIC1a) might be targeted to reduce depression. Genetically disrupting ASIC1a in mice produced antidepressant-like effects in the forced swim test, the tail suspension test, and following unpredictable mild stress. Pharmacologically inhibiting ASIC1a also had antidepressant-like effects in the forced swim test. The effects of ASIC1a disruption in the forced swim test were independent of and additive to those of several commonly used antidepressants. Furthermore, ASIC1a disruption interfered with an important biochemical marker of depression, the ability of stress to reduce BDNF in the hippocampus. Restoring ASIC1a to the amygdala of ASIC1a(-/-) mice with a viral vector reversed the forced swim test effects, suggesting that the amygdala is a key site of ASIC1a action in depression-related behavior. These data are consistent with clinical studies emphasizing the importance of the amygdala in mood regulation, and suggest that ASIC1a antagonists may effectively combat depression.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Amígdala del Cerebelo/efectos de los fármacos , Animales , Antidepresivos/administración & dosificación , Trastorno Depresivo/psicología , Femenino , Isoquinolinas/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Naftalenos/administración & dosificación , Proteínas del Tejido Nervioso/deficiencia , Canales de Sodio/deficiencia , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología
3.
Biochim Biophys Acta ; 1768(2): 317-23, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17092482

RESUMEN

Waterborne free silver can cause osmo- and ionoregulatory disturbances in freshwater organisms. The effects of a short-term exposure to extracellular Ag+ ions on membrane currents were investigated in voltage-clamped defolliculated Xenopus oocytes. At a holding potential of -60 mV, ionic silver (1 microM Ag+) increased inward currents (=I(Ag)) from -8+/-2 nA to -665+/-41 nA (n=74; N=27). I(Ag) activated within 2 min of silver exposure and then rose impetuously. This current was largely reversible by washout and repeatable. I(Ag) reversed around -30 mV and rectified slightly at more positive potentials. Na+-free bath conditions reduced the silver-induced current to a smaller but sustained current. The response to silver was abolished by the Cl- channel blockers DIDS and SITS, whereas niflumic acid strongly potentiated I(Ag). Intraoocyte injection of AgNO3 to about 1 mM [Ag]i strongly potentiated I(Ag). Extracellular application of either dithiothreitol (DTT), a compound known to reduce disulfide bridges, or L-cysteine abolished Ag+-activated increase of membrane current. In contrast, n-ethylmaleimide (NEM) which oxidizes SH-groups potentiated I(Ag). Hypoosmotic bath solution significantly increased I(Ag) whereas hyperosmolar conditions attenuated I(Ag). The activation of I(Ag) was largely preserved after chelation of cytosolic Ca2+ ions with BAPTA/AM. Taken together, these data suggest that Xenopus oocytes are sensitive to short-term exposure to waterborne Ag+ ions and that the elicited membrane currents result from extra- and intracellular action of Ag+ ions on peptide moieties at the oocyte membrane but may also affect conductances after internalization.


Asunto(s)
Membrana Celular , Canales Iónicos/fisiología , Oocitos/fisiología , Plata/farmacología , Xenopus laevis/metabolismo , Animales , Calcio/metabolismo , Cloruros/metabolismo , Electrofisiología , Femenino , Canales Iónicos/efectos de los fármacos , Potenciales de la Membrana , Oocitos/efectos de los fármacos , Ósmosis , Técnicas de Placa-Clamp
4.
Biol Psychiatry ; 62(10): 1140-8, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17662962

RESUMEN

BACKGROUND: The molecular mechanisms underlying innate fear are poorly understood. Previous studies indicated that the acid sensing ion channel ASIC1a influences fear behavior in conditioning paradigms. However, these differences may have resulted from an ASIC1a effect on learning, memory, or the expression of fear. METHODS: To test the hypothesis that ASIC1a influences the expression of fear or anxiety independent of classical conditioning, we examined the effects of disrupting the mouse ASIC1a gene on unconditioned fear in the open field test, unconditioned acoustic startle, and fear evoked by the predator odor trimethylthiazoline (TMT). In addition, we tested the effects of acutely inhibiting ASIC1a with PcTx, an ASIC1a antagonist in tarantula venom. Our immunohistochemistry suggested ASIC1a is expressed in the bed nucleus of the stria terminalis, medial amygdala, and periaqueductal gray, which are thought to play important roles in the generation and expression of innate fear. Therefore, we also tested whether ASIC1a disruption altered c-fos expression in these structures following TMT exposure. RESULTS: We found that the loss of ASIC1a reduced fear in the open field test, reduced acoustic startle, and inhibited the fear response to TMT. Similarly, intracerebroventricular administration of PcTx reduced TMT-evoked freezing in ASIC1a(+/+) mice but not ASIC1a(-/-) mice. In addition, loss of ASIC1a altered TMT-evoked c-fos expression in the medial amydala and dorsal periaqueductal gray. CONCLUSIONS: These findings suggest that ASIC1a modulates activity in the circuits underlying innate fear. Furthermore, the data indicate that targeting the ASIC1a gene or acutely inhibiting ASIC1a suppresses fear and anxiety independent of conditioning.


Asunto(s)
Conducta Animal/fisiología , Miedo/fisiología , Proteínas de la Membrana/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Vías Nerviosas/fisiología , Neuronas/fisiología , Canales de Sodio/deficiencia , Canales Iónicos Sensibles al Ácido , Estimulación Acústica/efectos adversos , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/fisiología , Células Cultivadas , Estimulantes del Sistema Nervioso Central/farmacología , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Conducta Exploratoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Odorantes , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Tiazoles/farmacología
5.
Biochim Biophys Acta ; 1566(1-2): 84-91, 2002 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-12421540

RESUMEN

The electrogenic Na(+) absorption across tight epithelia from invertebrates follows the principles analog to the mechanisms found in vertebrates. Extracellular Na(+)-ions pass the apical cell membranes through highly selective Na(+) channels and follow an electrochemical gradient which is sustained by the basolateral Na(+)/K(+)-ATPases. These apical Na(+) channels are selectively blocked by amiloride and represent the rate-limiting target for the control of transcellular Na(+) uptake. Although annelids express ADH-like peptide hormones, they lack the osmoregulatory mineralocorticoid system with the vertebrate-specific key hormone aldosterone. Thus, their epithelia may represent interesting models for investigation of ion transport regulation. While the formation of urine in the nephridia of, for example, leeches had been subject to intensive studies, the investigation of ion transport across their body wall was largely neglected. We use dissected segments of integuments from the limnic leech Hirudo medicinalis and, recently, from the earthworm Lumbricus terrestris for Ussing chamber experiments. We investigate transintegumental ion transport with focus on control of electrogenic Na(+) uptake and the amiloride-sensitive part of it and identified several extracellular factors as peptide hormones, tri- and divalent cations or purinergic molecules with regulatory effects on it. Meanwhile, there exists a macroscopic view on Na(+) absorption; however, other ion transport mechanisms across annelid integuments still await scientific effort. Here we present a concise synopsis about the electrophysiology of annelid integuments to illustrate the state of science and to evaluate whether further studies in this particular field may be of interest.


Asunto(s)
Anélidos/metabolismo , Epitelio/metabolismo , Sodio/metabolismo , Adenosina Trifosfato/farmacología , Amilorida/farmacología , Animales , Cámaras de Difusión de Cultivos , Conductividad Eléctrica , Agua Dulce , Transporte Iónico/efectos de los fármacos , Sanguijuelas , Potenciales de la Membrana , Modelos Animales , Oligoquetos , Hormonas Peptídicas/farmacología , Cloruro de Sodio , Regulación hacia Arriba , Equilibrio Hidroelectrolítico
6.
Biochim Biophys Acta ; 1609(2): 170-6, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12543378

RESUMEN

The effect of glibenclamide on heterologously expressed amiloride-sensitive sodium channels (ENaCs) was investigated in Xenopus oocytes. The ENaC is a heteromer and consists of alpha-, beta- and gamma-subunits and the alpha- and beta-subunits have previously been shown to confer sensitivity to glibenclamide. We coexpressed either colonic rat alpha- (ralpha) or guinea-pig alpha-subunit (gpalpha) with Xenopus betagamma-subunits. The gpalphaxbetagamma was significantly stimulated by glibenclamide (100 microM) (184+/-15%), whereas the ralpha-combination was slightly down-regulated by the sulfonylurea (79+/-4%). The stimulating effect did not interfere with Na(+)-self-inhibition resulting from intracellular accumulation of Na(+)-ions. We exchanged cytosolic termini between both orthologs but the gpalpha-chimera with the termini from rat retained sensitivity to glibenclamide. The effect of glibenclamide on Xenopus ENaC (xENaC) was inhibited by ADP-beta-S but not by ATP-gamma-S, when applied intracellularly. Intracellular loading with Na(+)-ions after inhibition of Na(+)/K(+)-ATPases with ouabain prevented an up-regulation of ENaC activity by glibenclamide. Pretreatment of oocytes expressing xENaC with edelfosine (ET-18-OCH(3)) slightly reduced stimulation of I(ami) (118+/-12%; control: 132+/-9%) while phosphatidylinositol-4,5-biphosphate (PIP(2)) significantly reduced the effect of glibenclamide to 101+/-3%.


Asunto(s)
Gliburida/farmacología , Oocitos/metabolismo , Canales de Sodio/biosíntesis , Animales , Membrana Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Gliburida/antagonistas & inhibidores , Gliburida/química , Oocitos/efectos de los fármacos , Éteres Fosfolípidos/farmacología , Fosfolípidos/farmacología , Xenopus laevis
7.
Respir Physiol Neurobiol ; 139(2): 133-44, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15122997

RESUMEN

Native alveolar epithelium from Xenopus lung was used for electrophysiological Ussing chamber experiments to investigate ion transport regulation. The tissue exhibits a considerable absorption of Na(+) ions and this transepithelial transport is largely up-regulated after treatment of donor animals with ACTH. Extracellular ATP, UTP and adenosine were tested for their regulating effects and all three increased I(sc), which was mainly due to a stimulation of amiloride sensitive Na(+) transport (increase of I(ami) 32% for ATP, 21% for UTP, 25% for adenosine). Solely the effect of UTP was completely abolished in the presence of amiloride. In contrast, the effects of ATP or adenosine disappeared under Cl(-)-free conditions. ATP and UTP proved to have additive effects and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of purinergic receptors, inhibited selectively the effect of UTP on I(sc). Further, I(sc) was increased by the P2X selective agonist beta,gamma-meATP. We were able to demonstrate, that extracellular purines and pyrimidines play a possible role as auto/paracrine messengers for alveolar ion transport regulation in Xenopus lung.


Asunto(s)
Adenosina Trifosfato/farmacología , Adenosina/farmacología , Transporte Iónico/efectos de los fármacos , Fosfato de Piridoxal/análogos & derivados , Mucosa Respiratoria/efectos de los fármacos , Uridina Trifosfato/farmacología , Hormona Adrenocorticotrópica/farmacología , Animales , Interacciones Farmacológicas , Espacio Extracelular/efectos de los fármacos , Femenino , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Inhibidores de Agregación Plaquetaria/farmacología , Fosfato de Piridoxal/farmacología , Mucosa Respiratoria/metabolismo , Sodio/metabolismo , Xenopus laevis
8.
Physiol Biochem Zool ; 76(1): 115-21, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12695992

RESUMEN

Leeches Hirudo medicinalis were exposed to either artificial pond water (APW; 1 mM NaCl) or to high-salinity conditions (HS; 200 mM NaCl) for several days. The aim of the study was to assess whether transepithelial ion conductances in their dorsal integuments were affected by this long-term acclimation. In voltage-clamp experiments using Ussing-type chambers, the transepithelial potential V(T) was clamped to 0 mV, and amiloride-sensitive currents (I(ami)) and total Na(+) transport (I(Na)) were determined. Apical Ca(2+)-free conditions strongly increased I(ami) to a similar magnitude in both differently acclimated integuments. Apical application of the lanthanide gadolinium <0.1 mM decreased the short-circuit current (I(sc)). In contrast, higher concentrations up to 10 mM Gd(3+) upregulated I(sc) by an additional 90% in APW integuments and by an additional 300% in HS integuments. This Gd(3+) effect was due to a doubling of I(Na) in APW and a more than sixfold increase of I(Na) in HS integuments. In summary, the macroscopic electrophysiological variables, including I(Na), were generally not affected by long-term exposure to high salinity. However, the presence of Gd(3+)-sensitive Na(+) conductances or regulating structures were greatly upregulated during HS acclimation.


Asunto(s)
Gadolinio/farmacología , Integumento Común/fisiología , Transporte Iónico/efectos de los fármacos , Sanguijuelas/efectos de los fármacos , Sanguijuelas/metabolismo , Sodio/metabolismo , Aclimatación , Animales , Calcio/farmacología , Electrofisiología , Canales de Sodio/metabolismo
9.
PLoS One ; 5(2): e9395, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20195381

RESUMEN

Degenerin/epithelial Na(+) channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na(+) transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC gene lounge lizard (llz) is co-transcribed in an operon-like locus with another gene of unknown function, CheB42a. Because operons often encode proteins in the same biochemical or physiological pathway, we hypothesized that CHEB42A and LLZ might function together. Consistent with this hypothesis, we found both genes expressed in cells previously implicated in sensory functions during male courtship. Furthermore, when coexpressed, LLZ coprecipitated with CHEB42A, suggesting that the two proteins form a complex. Although LLZ expressed either alone or with CHEB42A did not generate ion channel currents, CHEB42A increased current amplitude of another DEG/ENaC protein whose ligand (protons) is known, acid-sensing ion channel 1a (ASIC1a). We also found that CHEB42A was cleaved to generate a secreted protein, suggesting that CHEB42A may play an important role in the extracellular space. These data suggest that CHEB42A is a modulatory subunit for sensory-related Deg/ENaC signaling. These results are consistent with operon-like transcription of CheB42a and llz and explain the similar contributions of these genes to courtship behavior.


Asunto(s)
Proteínas de Drosophila/fisiología , Activación del Canal Iónico , Canales de Sodio/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Células COS , Línea Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoprecipitación , Masculino , Potenciales de la Membrana , Datos de Secuencia Molecular , Oocitos/fisiología , Unión Proteica , Homología de Secuencia de Aminoácido , Canales de Sodio/genética , Canales de Sodio/metabolismo , Xenopus laevis
10.
J Biol Chem ; 284(5): 2697-2705, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19028690

RESUMEN

The acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and peripheral neurons where it generates transient cation currents when extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic dendritic spines and has critical effects in neurological diseases associated with a reduced pH. However, knowledge of the proteins that interact with ASIC1a and influence its function is limited. Here, we show that alpha-actinin, which links membrane proteins to the actin cytoskeleton, associates with ASIC1a in brain and in cultured cells. The interaction depended on an alpha-actinin-binding site in the ASIC1a C terminus that was specific for ASIC1a versus other ASICs and for alpha-actinin-1 and -4. Co-expressing alpha-actinin-4 altered ASIC1a current density, pH sensitivity, desensitization rate, and recovery from desensitization. Moreover, reducing alpha-actinin expression altered acid-activated currents in hippocampal neurons. These findings suggest that alpha-actinins may link ASIC1a to a macromolecular complex in the postsynaptic membrane where it regulates ASIC1a activity.


Asunto(s)
Actinina/metabolismo , Actinina/fisiología , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Animales , Secuencia de Bases , Sitios de Unión , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Cartilla de ADN , Ratones , Proteínas del Tejido Nervioso/química , Técnicas de Placa-Clamp , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/química
11.
J Exp Biol ; 205(Pt 17): 2705-13, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12151376

RESUMEN

Little is known about the long-term regulation of epithelial ion transport in invertebrates and the specific mediators involved. For some years, we have been investigating the short-term regulation of transepithelial ion transport across the dorsal integument of the leech Hirudo medicinalis, and we have established a model of Na+ uptake. In the present study, we investigated the effect of long-term acclimation on transintegumental ion transport by adapting leeches to high-salinity conditions. We dissected segments of dorsal integument and measured ion currents in Ussing chamber experiments. Electrophysiological variables, such as transepithelial potential (V(T)) and short-circuit-current (I(sc)), were profoundly affected by adaptation to high-salinity conditions. The total transepithelial Na+ current (I(Na)) decreased from 7.66+/-0.82 to 4.6+/-0.54 microA cm(-2) in preparations adapted to high salinity. The involvement of epithelial Na+ channels was determined as current inhibition (I(ami)) by apical application of amiloride; Na+ channels were equally active in control epithelia and epithelia from leeches adapted to high salinity. Removal of Ca2+ from the apical solutions, which is believed to reduce intracellular Ca2+ concentrations, equalized transepithelial variables between high-salt-adapted integuments and control integuments. Extracellular purines regulate transepithelial Cl- secretion and Na+ absorption. In a variety of tissues we tested ATP and adenosine for their effects on epithelial transport. Examination of integuments from pondwater- and high-salinity-adapted leeches revealed different sensitivities for these purines. Apical and basolateral application of ATP both stimulated transepithelial Na+ uptake and I(ami). Adenosine upregulated non-Na+ currents and acted from the basolateral side only. Apical Ca2+-free conditions attenuated these effects of purines on transepithelial currents. Extracellular UTP had no effect on ion transport.


Asunto(s)
Sanguijuelas/metabolismo , Adenosina/farmacología , Adenosina Trifosfato/farmacología , Animales , Calcio/metabolismo , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Transporte Iónico/efectos de los fármacos , Sanguijuelas/efectos de los fármacos , Purinas/farmacología , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Sodio/metabolismo , Uridina Trifosfato/farmacología
12.
Proc Natl Acad Sci U S A ; 101(17): 6752-7, 2004 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15082829

RESUMEN

Acid-sensing ion channel (ASIC) 1a subunit is expressed in synapses of central neurons where it contributes to synaptic plasticity. However, whether these channels can conduct Ca(2+) and thereby raise the cytosolic Ca(2+) concentration, [Ca(2+)](c), and possibly alter neuronal physiology has been uncertain. We found that extracellular acidosis opened ASIC1a channels, which provided a pathway for Ca(2+) entry and elevated [Ca(2+)](c) in wild-type, but not ASIC1(-/-), hippocampal neurons. Acid application also raised [Ca(2+)](c) and evoked Ca(2+) currents in heterologous cells expressing ASIC1a. Although ASIC2a is also expressed in central neurons, neither ASIC2a homomultimeric channels nor ASIC1a/2a heteromultimers showed H(+)-activated [Ca(2+)](c) elevation or Ca(2+) currents. Because extracellular acidosis accompanying cerebral ischemia contributes to neuronal injury, we tested the effect of acidosis on cell death measured as lactate dehydrogenase release. Eliminating ASIC1a from neurons or treating ASIC1a-expressing cells with the ASIC blocker amiloride attenuated acidosis-induced cell injury. These results indicate that ASIC1a provides a non-voltage-gated pathway for Ca(2+) to enter neurons. Thus, it may provide a target for modulation of [Ca(2+)](c).


Asunto(s)
Acidosis/metabolismo , Calcio/metabolismo , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Acidosis/fisiopatología , Animales , Células CHO , Células COS , Cricetinae , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/fisiología , L-Lactato Deshidrogenasa/metabolismo , Neuronas/enzimología , Neuronas/fisiología , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA