RESUMEN
Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.
Asunto(s)
Síndrome de Radiación Aguda , Receptor Toll-Like 2 , Humanos , Ratones , Animales , Receptor Toll-Like 6 , Ligandos , Síndrome de Radiación Aguda/tratamiento farmacológico , Primates , FibroblastosRESUMEN
INTRODUCTION: Intraperitoneal (IP) chemotherapy improves survival in ovarian cancer but its use has been limited by toxicity with cisplatin-based regimens. The primary objective of this study was to define the maximum tolerated dose and dose-limiting toxicity of intravenous (IV) oxaliplatin and IP docetaxel in women with recurrent ovarian, fallopian tube or peritoneal cancer. Secondary objectives were response rate, time to progression, symptom interference with quality of life, and pharmacokinetics. METHODS: Patients received a constant dose of oxaliplatin 75 mg/m2 IV on day 1 and docetaxel escalating from 50 mg/m2 IP on day 2 every 3 weeks using a 3 + 3 design. Treatment continued until disease progression, remission, or intolerable toxicity occurred. Plasma and IP samples were taken to determine drug concentrations. Patients completed the MD Anderson Symptom Inventory weekly. RESULTS: Twelve patients were included. The median number of cycles was 4 (range 2-6) with a median time to progression of 4.5 months. Among eight patients with measurable disease, the best responses were partial response in two patients, stable disease in five, and progressive disease in one. A total of 14 grade 3-4 toxicities were noted, most commonly hematologic. Four patients, all dose level 3, had six dose-limiting toxicities: two with prolonged neutropenia, one with infection, one with hyponatremia, and two with abdominal pain. Dose level 3 was therefore considered intolerable. The mean±SD ratio of docetaxel area under the curve (AUC) in IP fluid to AUC in plasma was 229±111. Symptom interference with life activities steadily decreased from cycle 1 to 5. CONCLUSIONS: Oxaliplatin 75 mg/m2 IV on day 1 and docetaxel 75 mg/m2 IP on day 2 was the maximum tolerated dose. Most patients had partial response or stable disease, even in a heavily pre-treated population. At this dose level, patient-reported outcomes demonstrate temporary but tolerable decrements in quality of life.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de las Trompas Uterinas/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Calidad de Vida , Administración Intravenosa , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Docetaxel/administración & dosificación , Neoplasias de las Trompas Uterinas/patología , Femenino , Estudios de Seguimiento , Humanos , Infusiones Intravenosas , Dosis Máxima Tolerada , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/patología , Oxaliplatino/administración & dosificación , Neoplasias Peritoneales/patología , Pronóstico , Distribución TisularRESUMEN
Poor delivery and systemic toxicity of many cytotoxic agents, such as the recent promising combination chemotherapy regimen of folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), restrict their full utility in the treatment of pancreatic cancer. Local delivery of chemotherapies has become possible using iontophoretic devices that are implanted directly onto pancreatic tumors. We have fabricated implantable iontophoretic devices and tested the local iontophoretic delivery of FOLFIRINOX for the treatment of pancreatic cancer in an orthotopic patient-derived xenograft model. Iontophoretic delivery of FOLFIRINOX was found to increase tumor exposure by almost an order of magnitude compared with i.v. delivery with substantially lower plasma concentrations. Mice treated for 7 wk with device FOLFIRINOX experienced significantly greater tumor growth inhibition compared with i.v. FOLFIRINOX. A marker of cell proliferation, Ki-67, was stained, showing a significant reduction in tumor cell proliferation. These data capitalize on the unique ability of an implantable iontophoretic device to deliver much higher concentrations of drug to the tumor compared with i.v. delivery. Local iontophoretic delivery of cytotoxic agents should be considered for the treatment of patients with unresectable nonmetastatic disease and for patients with the need for palliation of local symptoms, and may be considered as a neoadjuvant approach to improve resection rates and outcome in patients with localized and locally advanced pancreatic cancer.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Camptotecina/análogos & derivados , Carcinoma Ductal Pancreático/tratamiento farmacológico , Bombas de Infusión Implantables , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Camptotecina/administración & dosificación , Camptotecina/farmacocinética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular/efectos de los fármacos , Fluorouracilo/administración & dosificación , Fluorouracilo/farmacocinética , Humanos , Iontoforesis/instrumentación , Leucovorina/administración & dosificación , Leucovorina/farmacocinética , Ratones , Ratones Desnudos , Compuestos Organoplatinos/administración & dosificación , Compuestos Organoplatinos/farmacocinética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Novel treatment strategies, including nanomedicine, are needed for improving management of triple-negative breast cancer. Patients with triple-negative breast cancer, when considered as a group, have a worse outcome after chemotherapy than patients with breast cancers of other subtypes, a finding that reflects the intrinsically adverse prognosis associated with the disease. The aim of this study was to improve the efficacy of docetaxel by incorporation into a novel nanoparticle platform for the treatment of taxane-resistant triple-negative breast cancer. Rod-shaped nanoparticles encapsulating docetaxel were fabricated using an imprint lithography based technique referred to as Particle Replication in Nonwetting Templates (PRINT). These rod-shaped PLGA-docetaxel nanoparticles were tested in the C3(1)-T-antigen (C3Tag) genetically engineered mouse model (GEMM) of breast cancer that represents the basal-like subtype of triple-negative breast cancer and is resistant to therapeutics from the taxane family. This GEMM recapitulates the genetics of the human disease and is reflective of patient outcome and, therefore, better represents the clinical impact of new therapeutics. Pharmacokinetic analysis showed that delivery of these PLGA-docetaxel nanoparticles increased docetaxel circulation time and provided similar docetaxel exposure to tumor compared to the clinical formulation of docetaxel, Taxotere. These PLGA-docetaxel nanoparticles improved tumor growth inhibition and significantly increased median survival time. This study demonstrates the potential of nanotechnology to improve the therapeutic index of chemotherapies and rescue therapeutic efficacy to treat nonresponsive cancers.
Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Taxoides/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Células A549 , Animales , Antineoplásicos/farmacocinética , Hidrocarburos Aromáticos con Puentes/metabolismo , Supervivencia Celular , Docetaxel , Portadores de Fármacos/química , Liberación de Fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones Desnudos , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie , Taxoides/química , Taxoides/metabolismo , Taxoides/farmacocinética , Neoplasias de la Mama Triple Negativas/genéticaRESUMEN
Delivery systems designed to have triggered release after passively targeting the tumor may improve small molecule chemotherapeutic delivery. Particle replication in nonwetting templates was used to prepare nanoparticles to passively target solid tumors in an A549 subcutaneous xenograft model. An acid labile prodrug was delivered to minimize systemic free docetaxel concentrations and improve tolerability without compromising efficacy.
Asunto(s)
Portadores de Fármacos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Profármacos , Taxoides , Animales , Docetaxel , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Humanos , Ratones , Nanopartículas/ultraestructura , Neoplasias/patología , Profármacos/química , Profármacos/farmacología , Taxoides/química , Taxoides/farmacología , Humectabilidad , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Recombinant adeno-associated virus (rAAV) has become a prominent vector for clinical use. Despite an increase in successful clinical outcomes, the amount of high-quality rAAVs required for clinical trials and eventual commercial demand is difficult to produce, especially for genetic diseases that are prevalent or require high doses. Many groups are focused on establishing production processes that can produce sufficient rAAV while maintaining potency and quality. Our group used a novel production platform to increase our yield of rAAV5. This production platform uses tetracycline-enabled self-silencing adenovirus (TESSA) to deliver the wild-type AAV replication and capsid genes alongside the adenovirus helper genes necessary for production. Here, we describe our efforts to evaluate the TESSA platform in house. We conducted numerous experiments to determine the optimal conditions for producing rAAV5 from the TESSA production system. We then produced rAAV5 from the TESSA system to compare against rAAV5 produced from triple transfection. Ultimately, we generated data that showed that the vector genome yield of rAAV5 produced with TESSA was >20-fold higher than rAAV5 produced with triple transfection. Additionally, our data show that quality as well as potency in mice of rAAV5 produced with the TESSA system and by triple transfection are equivalent.
RESUMEN
Vestibulodynia (VBD), an idiopathic pain disorder characterized by erythema and pain of the vulvar vestibule (the inner aspect of the labia minora and vaginal opening), is the most common cause of sexual pain for women of reproductive age. Women also feel discomfort with contact with clothing and tampon use. As most women with this disorder only have pain with provocation of the tissue, topical anesthetics applied to the vestibule are the current first line treatment for temporary pain relief. Treatment options are limited due to anatomical constraints of the vestibular region, poor drug retention time, imprecise dosing, leakage, and overall product messiness. In this study we report a novel approach to treatment of VBD using thin film designed to fit the vulvar vestibule and deliver lidocaine locally. Two use cases for VBD treatment were identified 1) rapid drug release (<5 min), for use prior to intercourse and 2) long-acting release (≥120 min) for prolonged use and relief throughout the day. Cellulose-based mucoadhesive thin films were fabricated using a solvent casting method. Three polymers including hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), and hydroxypropylmethycellulose (HMPC), were selected owing to their biocompatibility and ideal properties for film casting. Films casted with HEC, HPC, and HPMC exhibited mucoadhesive properties relative to a control, with the highest mucoadhesive force recorded for films casted with HPC. Effect of media volume, pH, presence of mucin and presence of drug on film dissolution rates were investigated. Dissolution rates were independent of media volume, media pH or drug presence, whereas faster dissolution rates were obtained for all films in presence of mucin. In vitro lidocaine release kinetics were influenced by polymer type, percent drug loading and film casting thickness. Lidocaine release was based on a diffusion mechanism rather than through film dissolution and faster release (â¼5 min) was observed for HEC films compared HPC films (â¼120 min). Higher drug loading and film thickness resulted in slower and more prolonged release kinetics of lidocaine. All films were biocompatible and exhibited good mechanical properties. Two film formulations (9% w/w HPC with 12% w/w LHC, 5% w/w HEC with 6% w/w LHC) were optimized to meet the two use case scenarios for VBD treatment and moved into in vivo testing. In vivo testing demonstrated the safety of the films in BALB/c mice, and the pharmacokinetic analysis demonstrated the delivery of lidocaine primarily to the vaginal tissue. We demonstrate the ability to develop a mucoadhesive, biodissolvable thin film and fine-tune drug release kinetics to optimize local delivery of lidocaine to the vulva.
Asunto(s)
Lidocaína , Vulvodinia , Anestésicos Locales , Animales , Composición de Medicamentos , Liberación de Fármacos , Femenino , RatonesRESUMEN
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
RESUMEN
Cocaine (COC) is a psychostimulant with a high potential for abuse and addiction. Risk for COC use disorder is driven, in part, by genetic factors. Animal models of addiction-relevant behaviors have proven useful for studying both genetic and nongenetic contributions to drug response. In a previous study, we examined initial locomotor sensitivity to COC in genetically diverse inbred mouse strains. That work highlighted the relevance of pharmacokinetics (PK) in initial locomotor response to COC but was limited by a single dose and two sampling points. The objective of the present study was to characterize the PK and pharmacodynamics of COC and its metabolites (norcocaine and benzoylecgonine) in six inbred mouse strains (I/LnJ, C57BL/6J, FVB/NJ, BTBR T+ tf/J, LG/J and LP/J) that exhibit extreme locomotor responses to cocaine. Mice were administered COC at one of four doses and concentrations of cocaine, norcocaine and benzoylecgonine were analyzed in both plasma and brain tissue at 5 different time points. Initial locomotor sensitivity to COC was used as a pharmacodynamic endpoint. We developed an empirical population PK model that simultaneously characterizes cocaine, norcocaine and benzoylecgonine in plasma and brain tissues. We observed interstrain variability occurring in the brain compartment that may contribute to pharmacodynamic differences among select strains. Our current work paves the way for future studies to explore strain-specific pharmacokinetic differences and identify factors other than PK that are responsible for the diverse behavioral response to COC across these inbred mouse strains.
Asunto(s)
Trastornos Relacionados con Cocaína/genética , Cocaína/farmacocinética , Animales , Encéfalo/metabolismo , Cocaína/administración & dosificación , Cocaína/sangre , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Genotipo , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución TisularRESUMEN
Eosinophilic esophagitis (EoE) is a chronic atopic disease that has become increasingly prevalent over the past 20 years. A first-line pharmacologic option is topical/swallowed corticosteroids, but these are adapted from asthma preparations such as fluticasone from an inhaler and yield suboptimal response rates. There are no FDA-approved medications for the treatment of EoE, and esophageal-specific drug formulations are lacking. We report the development of two novel esophageal-specific drug delivery platforms. The first is a fluticasone-eluting string that could be swallowed similar to the string test "entero-test" and used for overnight treatment, allowing for a rapid release along the entire length of esophagus. In vitro drug release studies showed a target release of 1 mg/day of fluticasone. In vivo pharmacokinetic studies were carried out after deploying the string in a porcine model, and our results showed a high local level of fluticasone in esophageal tissue persisting over 1 and 3 days, and a minimal systemic absorption in plasma. The second device is a fluticasone-eluting 3D printed ring for local and sustained release of fluticasone in the esophagus. We designed and fabricated biocompatible fluticasone-loaded rings using a top-down, Digital Light Processing (DLP) Gizmo 3D printer. We explored various strategies of drug loading into 3D printed rings, involving incorporation of drug during the print process (pre-loading) or after printing (post-loading). In vitro drug release studies of fluticasone-loaded rings (pre and post-loaded) showed that fluticasone elutes at a constant rate over a period of one month. Ex vivo pharmacokinetic studies in the porcine model also showed high tissue levels of fluticasone and both rings and strings were successfully deployed into the porcine esophagus in vivo. Given these preliminary proof-of-concept data, these devices now merit study in animal models of disease and ultimately subsequent translation to testing in humans.
RESUMEN
Current interstitial therapies for glioblastoma can overcome the blood-brain barrier but fail to optimally release therapy at a rate that stalls cancer reoccurrence. To address this lapse, acetalated dextran (Ace-DEX) nanofibrous scaffolds were used for their unique degradation rates that translate to a broad range of drug release kinetics. A distinctive range of drug release rates was illustrated via electrospun Ace-DEX or poly(lactic acid) (PLA) scaffolds. Scaffolds composed of fast, medium, and slow degrading Ace-DEX resulted in 14.1%, 2.9%, and 1.3% paclitaxel released per day. To better understand the impact of paclitaxel release rate on interstitial therapy, two clinically relevant orthotopic glioblastoma mouse models were explored: (1) a surgical model of resection and recurrence (resection model) and (2) a distant metastasis model. The effect of unique drug release was illustrated in the resection model when a 78% long-term survival was observed with combined fast and slow release scaffolds, in comparison to a survival of 20% when the same dose is delivered at a medium release rate. In contrast, only the fast release rate scaffold displayed treatment efficacy in the distant metastasis model. Additionally, the acid-sensitive Ace-DEX scaffolds were shown to respond to the lower pH conditions associated with GBM tumors, releasing more paclitaxel in vivo when a tumor was present in contrast to nonacid sensitive PLA scaffolds. The unique range of tunable degradation and stimuli-responsive nature makes Ace-DEX a promising drug delivery platform to improve interstitial therapy for glioblastoma.
Asunto(s)
Antineoplásicos/uso terapéutico , Dextranos/química , Portadores de Fármacos/química , Glioblastoma/tratamiento farmacológico , Paclitaxel/uso terapéutico , Poliésteres/química , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones Desnudos , Metástasis de la Neoplasia/tratamiento farmacológico , Paclitaxel/farmacocinética , Prevención Secundaria/métodos , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Glioblastoma-associated macrophages and microglia (GAMs) are the predominant immune cells in the tumor microenvironment. Activation of MerTK, a receptor tyrosine kinase, polarizes GAMs to an immunosuppressive phenotype, promoting tumor growth. Here, the role of MerTK inhibition in the glioblastoma microenvironment is investigated in vitro and in vivo. METHODS: Effects of MRX-2843 in glioblastoma microenvironment regulation were determined in vitro by cell viability, cytokine array, in vitro tube formation, Western blotting, and wound healing assays. A syngeneic GL261 orthotopic glioblastoma mouse model was used to evaluate the survival benefit of MRX-2843 treatment. Multiplex fluorescent immunohistochemistry was used to evaluate the expression of CD206, an anti-inflammatory marker on GAMs, and angiogenesis in murine brain tumor tissues. RESULTS: MRX-2843 inhibited cell growth and induced apoptosis in human glioblastoma cells and decreased protein expression of phosphorylated MerTK, AKT, and ERK, which are essential for cell survival signaling. Interleukin-8 and C-C motif chemokine ligand 2, the pro-glioma and pro-angiogenic cytokines, were decreased by MRX-2843. Decreased vascular formation and numbers of immunosuppressive (CD206+) GAMs were observed following MRX-2843 treatment in vivo, suggesting that in addition to alleviating immunosuppression, MRX-2843 also inhibits neoangiogenesis in the glioma microenvironment. These results were supported by a prolonged survival in the syngeneic mouse orthotopic GL261 glioblastoma model following MRX-2843 treatment. CONCLUSION: Our findings suggest that MRX-2843 has a therapeutic benefit via promoting GAM polarization away from immunosuppressive condition, inhibiting neoangiogenesis in the glioblastoma microenvironment and inducing tumor cell death.
RESUMEN
The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. This review provides an updated summary of factors known to affect the disposition of mAbs/ADCs in development and in clinical use, as well as how these factors should be considered in the selection and design of preclinical studies of ADC agents in development.
RESUMEN
Major advances in carrier-mediated agents (CMAs), which include nanoparticles, nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure, and delivery to the site of action over their small molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery, and pharmacologic effects (efficacy and toxicity) of these agents. In this chapter, we focus on the analytical and phenotypic methods required to design a study that characterizes the pharmacokinetics (PK) and pharmacodynamics (PD) of all forms of these nanoparticle-based drug agents. These methods include separation of encapsulated and released drugs, ultrafiltration for measurement of non-protein bound active drug, microdialysis to measure intra-tumor drug concentrations, immunomagnetic separation and flow cytometry for sorting cell types, and evaluation of spatial distribution of drug forms relative to tissue architecture by mass spectrometry imaging and immunohistochemistry.
Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Farmacocinética , Animales , Humanos , Nanopartículas/química , FenotipoRESUMEN
Major advances in therapeutic proteins, including antibody-drug conjugates (ADCs), have created revolutionary drug delivery systems in cancer over the past decade. While these immunoconjugate agents provide several advantages compared to their small-molecule counterparts, their clinical use is still in its infancy. The considerations in their development and clinical use are complex, and consist of multiple components and variables that can affect the pharmacologic characteristics. It is critical to understand the mechanisms employed by ADCs in navigating biological barriers and how these factors affect their biodistribution, delivery to tumors, efficacy, and toxicity. Thus, future studies are warranted to better understand the complex pharmacology and interaction between ADC carriers and biological systems, such as the mononuclear phagocyte system (MPS) and tumor microenvironment. This review provides an overview of factors that affect the pharmacologic profiles of ADC therapies that are currently in clinical use and development.
RESUMEN
PURPOSE: Effective treatment of patients with locally advanced pancreatic cancer is a significant unmet clinical need. One major hurdle that exists is inadequate drug delivery due to the desmoplastic stroma and poor vascularization that is characteristic of pancreatic cancer. The local iontophoretic delivery of chemotherapies provides a novel way of improving treatment. With the growing practice of highly toxic combination therapies in the treatment of pancreatic cancer, the use of iontophoresis for local delivery can potentiate the anti-cancer effects of these therapies while sparing unwanted toxicity. The objective of this study was to investigate the impact of formulation on the electro-transport of the FOLFIRINOX regimen for the development of a new treatment for pancreatic cancer. METHODS: Three formulations of the FOLFIRINOX regimen (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin) were generated at a fixed pH of 6.0 and were referred to as formulation A (single drug solution with all four drugs combined), formulation B (two drug solutions with two drugs per solution), and formulation C (four individual drug solutions). Anodic iontophoresis of the three different formulations was evaluated in orthotopic patient-derived xenografts of pancreatic cancer. RESULTS: Iontophoretic transport of the FOLFIRINOX drugs was characterized according to organ exposure after a single device treatment in vivo. We report that the co-iontophoresis of two drug solutions, leucovorin + oxaliplatin and 5-fluorouracil + irinotecan, resulted in the highest levels of cytotoxic drugs in the tumor compared to drugs delivered individually or combined into one solution. There was no significant difference in plasma, pancreas, kidney, and liver exposure to the cytotoxic drugs delivered by the three different formulations. In addition, we found that reducing the duration of iontophoretic treatment from 10 to 5 min per solution resulted in a significant decrease in drug concentrations. CONCLUSIONS: Underlying the difference in drug transport of the formulations was electrolyte concentrations, which includes both active and inactive components. Electrolyte concentrations can hinder or improve drug electro-transport. Overall, balancing electrolyte concentration is needed for optimal electro-transport.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Sistemas de Liberación de Medicamentos , Fluorouracilo/administración & dosificación , Iontoforesis , Leucovorina/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Transporte Biológico , Combinación de Medicamentos , Electrólitos/metabolismo , Humanos , Irinotecán , Ratones , Oxaliplatino , Neoplasias Pancreáticas/patología , Factores de Tiempo , Distribución Tisular , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Background: Glioma-associated macrophages and microglia (GAMs) are components of the glioblastoma (GBM) microenvironment that express MerTK, a receptor tyrosine kinase that triggers efferocytosis and can suppress innate immune responses. The aim of the study was to define MerTK as a therapeutic target using an orally bioavailable inhibitor, UNC2025. Methods: We examined MerTK expression in tumor cells and macrophages in matched patient GBM samples by double-label immunohistochemistry. UNC2025-induced MerTK inhibition was studied in vitro and in vivo. Results: MerTK/CD68+ macrophages increased in recurrent tumors while MerTK/glial fibrillary acidic protein-positive tumor cells did not. Pharmacokinetic studies showed high tumor exposures of UNC2025 in a syngeneic orthotopic allograft mouse GBM model. The same model mice were randomized to receive vehicle, daily UNC2025, fractionated external beam radiotherapy (XRT), or UNC2025/XRT. Although median survival (21, 22, 35, and 35 days, respectively) was equivalent with or without UNC2025, bioluminescence imaging (BLI) showed significant growth delay with XRT/UNC2025 treatment and complete responses in 19%. The responders remained alive for 60 days and showed regression to 1%-10% of pretreatment BLI tumor burden; 5 of 6 were tumor free by histology. In contrast, only 2% of 98 GBM mice of the same model treated with XRT survived 50 days and none survived 60 days. UNC2025 also reduced CD206+ macrophages in mouse tumor samples. Conclusions: These results suggest that MerTK inhibition combined with XRT has a therapeutic effect in a subset of GBM. Further mechanistic studies are warranted.
Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Piperazinas/uso terapéutico , Tirosina Quinasa c-Mer/efectos de los fármacos , Adenina/uso terapéutico , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Humanos , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Tirosina Quinasa c-Mer/genéticaRESUMEN
Major advances in carrier-mediated agents, including nanoparticle, conjugates and antibody-drug conjugates, have created revolutionary drug delivery systems in cancer over the past two decades. While these agents provide several advantages, such as greater duration of exposure and solubility, compared with their small-molecule counterparts, there is substantial variability in delivery of these agents to tissues and especially tumors. This review provides an overview of tumor microenvironment factors that affect the pharmacokinetics and pharmacodynamics of carrier-mediated agents observed in preclinical models and patients.
Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/fisiología , Animales , Antineoplásicos/farmacocinética , Liberación de Fármacos , Humanos , Terapia Molecular Dirigida/métodos , Nanopartículas/química , Neoplasias/metabolismo , PermeabilidadRESUMEN
AIM: Particle Replication in Nonwetting Templates (PRINT(®)) PLGA nanoparticles of docetaxel and acid-labile C2-dimethyl-Si-Docetaxel were evaluated with small molecule docetaxel as treatments for non-small-cell lung cancer brain metastases. MATERIALS & METHODS: Pharmacokinetics, survival, tumor growth and mice weight change were efficacy measures against intracranial A549 tumors in nude mice. Treatments were administered by intravenous injection. RESULTS: Intracranial tumor concentrations of PRINT-docetaxel and PRINT-C2-docetaxel were 13- and sevenfold greater, respectively, than SM-docetaxel. C2-docetaxel conversion to docetaxel was threefold higher in intracranial tumor as compared with nontumor tissues. PRINT-C2-docetaxel increased median survival by 35% with less toxicity as compared with other treatments. CONCLUSION: The decreased toxicity of the PRINT-C2-docetaxel improved treatment efficacy against non-small-cell lung cancer brain metastasis.
Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácido Láctico/química , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Ácido Poliglicólico/química , Taxoides/farmacocinética , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/secundario , Línea Celular Tumoral , Docetaxel , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Taxoides/administración & dosificación , Taxoides/químicaRESUMEN
The pharmacokinetics (PK) of carrier-mediated agents (CMA) is dependent upon the carrier system. As a result, CMA PK differs greatly from the PK of small molecule (SM) drugs. Advantages of CMAs over SMs include prolonged circulation time in plasma, increased delivery to tumors, increased antitumor response, and decreased toxicity. In theory, CMAs provide greater tumor drug delivery than SMs due to their prolonged plasma circulation time. We sought to create a novel PK metric to evaluate the efficiency of tumor and tissue delivery of CMAs and SMs. We conducted a study evaluating the plasma, tumor, liver, and spleen PK of CMAs and SMs in mice bearing subcutaneous flank tumors using standard PK parameters and a novel PK metric entitled relative distribution over time (RDI-OT), which measures efficiency of delivery. RDI-OT is defined as the ratio of tissue drug concentration to plasma drug concentration at each time point. The standard concentration versus time area under the curve values (AUC) of CMAs were higher in all tissues and plasma compared with SMs. However, 8 of 17 SMs had greater tumor RDI-OT AUC0-last values than their CMA comparators and all SMs had greater tumor RDI-OT AUC0-6 h values than their CMA comparators. Our results indicate that in mice bearing flank tumor xenografts, SMs distribute into tumor more efficiently than CMAs. Further research in additional tumor models that may more closely resemble tumors seen in patients is needed to determine if our results are consistent in different model systems.