Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biofouling ; 40(2): 209-222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38500010

RESUMEN

This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by 13Carbon nuclear magnetic resonance (13C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with Psychrobacter adeliensis and Shewanella algidipiscicola being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of Psychrobacter adeliensis biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.


Asunto(s)
Incrustaciones Biológicas , Geranium , Aceites Volátiles , Psychrobacter , Biopelículas , Incrustaciones Biológicas/prevención & control , Aceites Volátiles/farmacología , Aceites de Silicona/farmacología , Siliconas
2.
Fungal Genet Biol ; 165: 103780, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780981

RESUMEN

Cryptococcus gattii is one of the etiological agents of cryptococcosis. To achieve a successful infection, C. gattii cells must overcome the inhospitable host environment and deal with the highly specialized immune system and poor nutrients availability. Inside the host, C. gattii uses a diversified set of tools to maintain homeostasis and establish infection, such as the expression of remarkable and diverse heat shock proteins (Hsps). Grouped by molecular weight, little is known about the Hsp12 subset in pathogenic fungi. In this study, the function of the C. gattii HSP12.1 and HSP12.2 genes was characterized. Both genes were upregulated during murine infection and heat shock. The hsp12.1 Δ null mutant cells were sensitive to plasma membrane and oxidative stressors. Moreover, HSP12 deletion induced C. gattii reactive oxygen species (ROS) accumulation associated with a differential expression pattern of oxidative stress-responsive genes compared to the wild type strain. Apart from these findings, the deletion of the paralog gene HSP12.2 did not lead to any detectable phenotype. Additionally, the double-deletion mutant strain hsp12.1 Δ /hsp12.2 Δ presented a similar phenotype to the single-deletion mutant hsp12.1 Δ, suggesting a minor participation of Hsp12.2 in these processes. Furthermore, HSP12.1 disruption remarkably affected C. gattii virulence and phagocytosis by macrophages in an invertebrate model of infection, demonstrating its importance for C. gattii pathogenicity.


Asunto(s)
Criptococosis , Cryptococcus gattii , Proteínas de Choque Térmico Pequeñas , Animales , Ratones , Criptococosis/microbiología , Cryptococcus gattii/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Fagocitosis , Virulencia
3.
Arch Virol ; 168(3): 83, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757570

RESUMEN

Here, we report the occurrence and complete genome sequence of a novel victorivirus infecting Metarhizium anisopliae, named "Metarhizium anisopliae victorivirus 1" (MaVV1). The genome is 5353 bp in length and contains two open reading frames (ORFs), encoding a coat protein and an RNA-dependent RNA polymerase (RdRp), that overlap at the octanucleotide sequence AUGAGUAA. These ORFs showed sequence similarity to the corresponding ORFs of Ustilaginoidea virens RNA virus L (68.23%) and Ustilaginoidea virens RNA virus 13 (58.11%), respectively, both of which belong to the family Totiviridae. Phylogenetic analysis based on RdRp sequences revealed that MaVV1 clustered with members of the genus Victorivirus. This is the first genome sequence reported for a virus belonging to the genus Victorivirus infecting the entomopathogenic fungus M. anisopliae.


Asunto(s)
Genoma Viral , Metarhizium , Totiviridae , Genoma Viral/genética , Metarhizium/genética , Metarhizium/virología , Sistemas de Lectura Abierta , Filogenia , ARN Bicatenario , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Totiviridae/genética
4.
Fungal Genet Biol ; 159: 103675, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35183746

RESUMEN

Species from the Metarhizium genus are the causal agents of the green muscardine disease of insects. These fungi have been successfully employed for the biological control of pests over decades. Besides the biocontrol applications, recent efforts for genome sequencing of species in this genus have revealed a great diversity of biosynthetic gene clusters potentially associated with secondary metabolite synthesis. Amongst such molecules are the pseurotins, compounds with several activities, as chitin synthase inhibitors, and immunoglobulin E suppressors. Here, we report, for the first time, the isolation of pseurotin A from the culture broth of M. anisopliae, as well as the characterization of the effects of this compound over the model-arthropod Galleria mellonella. Pseurotin A displayed dose-dependent reversible paralysis effects when injected into the larvae hemocoel. However, the posterior challenge of the treated insects with M. anisopliae conidia did not lead to increased mortality, suggesting that pseurotin A treatment did not increase larvae susceptibility to the green muscardine disease. Although apparent insecticidal effects were not observed for pseurotin A, the paralysis effect observed can be important in M. anisopliae infection development.


Asunto(s)
Metarhizium , Mariposas Nocturnas , Animales , Larva , Metarhizium/genética , Pirrolidinonas
5.
Fungal Genet Biol ; 152: 103568, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33991663

RESUMEN

Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.


Asunto(s)
Vías Biosintéticas/genética , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Metarhizium/genética , Metarhizium/metabolismo , Policétidos/metabolismo , Policétidos/farmacología , Animales , Antifúngicos , Aspergillus nidulans/genética , Hongos/efectos de los fármacos , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Larva/microbiología , Interacciones Microbianas/fisiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas , Familia de Multigenes , Policétidos/química , Policétidos/aislamiento & purificación , Metabolismo Secundario/genética
6.
Genet Mol Biol ; 44(3): e20210073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34606563

RESUMEN

Filamentous fungi are the organisms of choice for most industrial biotechnology. Some species can produce a variety of secondary metabolites and enzymes of commercial interest, and the production of valuable molecules has been enhanced through different molecular tools. Methods for genetic manipulation and transformation have been essential for the optimization of these organisms. The genus Simplicillium has attracted increased attention given several potential biotechnological applications. The Simplicillium genus harbors several entomopathogenic species and some isolates have been explored for bioremediation of heavy metal contaminants. Furthermore, the myriad of secondary metabolites isolated from Simplicillium spp. render these organisms as ideal targets for deep exploration and further biotechnological mining possibilities. However, the lack of molecular tools hampered the exploration of this genus. Thus, an Agrobacterium tumefaciens-mediated transformation method was established for Simplicillium subtropicum, employing the far-red fluorescent protein TURBOFP635/Katushka, as a visual marker, and the selection marker SUR gene, that confers resistance to chlorimuron ethyl. Notably, one round of transformation using the established method yielded almost 400 chlorimuron resistant isolates. Furthermore, these transformants displayed mitotic stability for, at least, five generations. We anticipate that this method can be useful for deep molecular exploration and improvement of strains in the Simplicillium genus.

7.
Genet Mol Biol ; 44(3): e20200390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34352067

RESUMEN

Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3ß was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.

8.
Exp Parasitol ; 208: 107812, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31809704

RESUMEN

The bovine tick, Rhipicephalus microplus, is the main ectoparasite of cattle and causes loss of billions of dollars worldwide in lost meat, milk, and leather production, as well as control expenses. In addition to systemically impacting the host during the parasitic act, this parasite is also an important disease vector. Traditionally, the main commercial control of the tick is achieved through application of chemical acaricides, which can leave residues in the meat and milk. Moreover, ticks can become resistant to these chemicals due to their massive and incorrect use. Many alternative methods have been tested including vaccines and natural products from plant origin. However, the efficacy of these treatments is variable and limited, especially when used alone. Arthropod-pathogenic fungi, such as Metarhizium anisopliae, are among the natural microbial agents with promising potential to be used alone or in association with other products, for example with chemical acaricides. This article discusses several aspects of bovine tick control related to the use of M. anisopliae, which is one of the most studied and viable alternative tools for effective tick control.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Metarhizium/fisiología , Control Biológico de Vectores/métodos , Rhipicephalus , Infestaciones por Garrapatas/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/economía , Enfermedades de los Bovinos/parasitología , Control Biológico de Vectores/normas , Rhipicephalus/microbiología , Rhipicephalus/fisiología , Infestaciones por Garrapatas/economía , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/prevención & control
9.
BMC Genomics ; 20(1): 836, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711419

RESUMEN

BACKGROUND: The Metarhizium genus harbors important entomopathogenic fungi. These species have been widely explored as biological control agents, and strategies to improve the fungal virulence are under investigation. Thus, the interaction between Metarhizium species and susceptible hosts have been explored employing different methods in order to characterize putative virulence determinants. However, the impact of epigenetic modulation on the infection cycle of Metarhizium is still an open topic. Among the different epigenetic modifications, DNA methylation of cytosine bases is an important mechanism to control gene expression in several organisms. To better understand if DNA methylation can govern Metarhizium-host interactions, the genome-wide DNA methylation profile of Metarhizium anisopliae was explored in two conditions: tick mimicked infection and a saprophytic-like control. RESULTS: Using a genome wide DNA methylation profile based on bisulfite sequencing (BS-Seq), approximately 0.60% of the total cytosines were methylated in saprophytic-like condition, which was lower than the DNA methylation level (0.89%) in tick mimicked infection condition. A total of 670 mRNA genes were found to be putatively methylated, with 390 mRNA genes uniquely methylated in the tick mimicked infection condition. GO terms linked to response to stimuli, cell wall morphogenesis, cytoskeleton morphogenesis and secondary metabolism biosynthesis were over-represented in the tick mimicked infection condition, suggesting that energy metabolism is directed towards the regulation of genes associated with infection. However, recognized virulence determinants known to be expressed at distinct infection steps, such as the destruxin backbone gene and the collagen-like protein gene Mcl1, were found methylated, suggesting that a dynamic pattern of methylation could be found during the infectious process. These results were further endorsed employing RT-qPCR from cultures treated or not with the DNA methyltransferase inhibitor 5-Azacytidine. CONCLUSIONS: The set of genes here analyzed focused on secondary metabolites associated genes, known to be involved in several processes, including virulence. The BS-Seq pipeline and RT-qPCR analysis employing 5-Azacytidine led to identification of methylated virulence genes in M. anisopliae. The results provided evidences that DNA methylation in M. anisopliae comprises another layer of gene expression regulation, suggesting a main role of DNA methylation regulating putative virulence determinants during M. anisopliae infection cycle.


Asunto(s)
Metilación de ADN , Metarhizium/genética , Garrapatas/microbiología , Animales , Genoma Fúngico , Metarhizium/metabolismo , Metarhizium/patogenicidad , RNA-Seq , Metabolismo Secundario , Virulencia
10.
Mol Genet Genomics ; 294(4): 901-917, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30923942

RESUMEN

The Pr1 family of serine endopeptidases plays an important role in pathogenicity and virulence of entomopathogens such as Metarhizium anisopliae (Ascomycota: Hypocreales). These virulence factors allow for the penetration of the host cuticle, a vital step in the infective process of this fungus, which possesses 11 Pr1 isoforms (Pr1A through Pr1K). The family is divided into two classes with Class II (proteinase K-like) comprising 10 isoforms further split into three subfamilies. It is believed that these isoforms act synergistically and with other virulence factors, allowing pathogenicity to multiple hosts. As virulence coevolves through reciprocal selection with hosts, positive selection may lead to the evolution of new protease families or isoforms of extant ones that can withstand host defenses. This work tests this hypothesis in Class II Pr1 proteins, focusing on M. anisopliae, employing different methods for phylogenetic inference in amino acid and nucleotide datasets in multiple arrangements for Metarhizium spp. and related species. Phylogenies depict groups that match the taxonomy of their respective organisms with high statistical support, with minor discrepancies. Positively selected sites were identified in six out of ten Pr1 isoforms, most of them located in the proteolytic domain and spatially close to the catalytic residues. Moreover, there was evidence of functional divergence in the majority of pairwise comparisons. These results imply the existence of differential selective pressure acting on Pr1 proteins and a potential new isoform, likely affecting host specificities, virulence, or even adapting the organism to different host-independent lifestyles.


Asunto(s)
Metarhizium/clasificación , Metarhizium/patogenicidad , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Sitios de Unión , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Metarhizium/enzimología , Familia de Multigenes , Filogenia , Dominios Proteicos , Selección Genética , Factores de Virulencia/química , Factores de Virulencia/genética
11.
FEMS Yeast Res ; 19(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418573

RESUMEN

Melanin formation is a promising target for antifungal development. We screened a collection of 727 compounds that were previously approved for clinical use in humans for inhibition of pigmentation in Cryptococcus gattii, a lethal fungal pathogen that causes damage to both immunocompetent and immunocompromised hosts. The pyrimidine analogues flucytosine (5-fluorocytosine [5-FC]), 5-fluorouracil (5-FU) and carmofur were identified as efficient inhibitors of pigmentation in the C. gattii model. Since melanin synthesis is enzymatically catalyzed by laccase in Cryptococcus, we investigated whether inhibition of pigmentation by the pyrimidine analogues was laccase-mediated. Enzyme activity and expression of LAC genes were not involved in the effects of the pyrimidine analogues, suggesting alternative cellular targets for inhibition of pigmentation. To address this hypothesis, we screened a collection of approximately 8000 mutants of C. gattii that were produced by insertional mutation after incubation with Agrobacterium tumefaciens and identified a gene product required for the anti-pigmentation activity of 5-FC as a beta-DNA polymerase. Reduced expression of this gene affected capsule formation and urease activity, suggesting essential roles in the cryptococcal physiology. These results demonstrate a previously unknown antifungal activity of 5-FC and reveal a promising target for the development of novel antifungals.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus gattii/efectos de los fármacos , Melaninas/antagonistas & inhibidores , Melaninas/biosíntesis , Cryptococcus gattii/genética , Análisis Mutacional de ADN , Evaluación Preclínica de Medicamentos , Flucitosina/farmacología , Fluorouracilo/análogos & derivados , Fluorouracilo/farmacología , Pruebas Genéticas , Mutagénesis Insercional
12.
Cell Microbiol ; 20(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29113016

RESUMEN

Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.


Asunto(s)
Sistema Nervioso Central/microbiología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/microbiología , Encéfalo/metabolismo , Encéfalo/microbiología , Calcineurina/metabolismo , Calcio/metabolismo , Línea Celular , Criptococosis/metabolismo , Criptococosis/microbiología , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Meningoencefalitis/metabolismo , Meningoencefalitis/microbiología , Ratones , Ratones Endogámicos BALB C , Vacuolas/metabolismo , Vacuolas/microbiología , Virulencia/fisiología , Factores de Virulencia/metabolismo
13.
Exp Appl Acarol ; 74(4): 455-461, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29526024

RESUMEN

Entomopathogenic fungi, such as Metarhizium anisopliae, for the control of arthropods, have been studied for more than 20 years. The aim of this study was to determine the best methodology to evaluate the in vitro effect of the fungus M. anisopliae on Rhipicephalus microplus tick larvae. We compared a modified Larval Packet Test (LPT) and a Larval Immersion Test (LIT). For the LPT filter papers were impregnated with 1 mL of M. anisopliae suspension in Triton X-100 at 0.02%, in concentrations of 106, 107 and 108 conidia/mL and subsequently folded to include the larval ticks. LIT was performed by immersing the larvae in M. anisopliae suspensions for 5 min using the same three concentrations, then the larvae were placed on filter paper clips. For LPT, the LT50 values obtained were 134.6, 27.2 and 24.8 days for concentrations of 106, 107 and 108 conidia/mL; and the mortality after 21 days was 17.3, 17.6 and 38%, respectively. The LT50 values of LIT were 24.5, 20 and 9.2 days with mortality after 21 days of 50.5, 64.7 and 98% for 106, 107 and 108 conidia/mL, respectively. For the same conidia concentration, LIT showed a higher mortality in a shorter time interval when compared with LPT. These differences between the methods tested must be taking into account in further screening and effect studies with M. anisopliae. The set of results shown here could optimize the protocol used to identify M. anisopliae strains pathogenic against R. microplus.


Asunto(s)
Larva/microbiología , Metarhizium/fisiología , Control Biológico de Vectores/métodos , Rhipicephalus/microbiología , Control de Ácaros y Garrapatas/métodos , Animales , Esporas Fúngicas/fisiología
14.
Genet Mol Biol ; 41(4): 843-857, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534852

RESUMEN

Cell walls are involved in manifold aspects of fungi maintenance. For several fungi, chitin synthesis, degradation and recycling are essential processes required for cell wall biogenesis; notably, the activity of ß-N-acetylglucosaminidases (NAGases) must be present for chitin utilization. For entomopathogenic fungi, such as Metarhizium anisopliae, chitin degradation is also used to breach the host cuticle during infection. In view of the putative role of NAGases as virulence factors, this study explored the transcriptional profile and evolution of putative GH20 NAGases (MaNAG1 and MaNAG2) and GH3 NAGases (MaNAG3 and MaNAG4) identified in M. anisopliae. While MaNAG2 orthologs are conserved in several ascomycetes, MaNAG1 clusters only with Aspergilllus sp. and entomopathogenic fungal species. By contrast, MaNAG3 and MaNAG4 were phylogenetically related with bacterial GH3 NAGases. The transcriptional profiles of M. anisopliae NAGase genes were evaluated in seven culture conditions showing no common regulatory patterns, suggesting that these enzymes may have specific roles during the Metarhizium life cycle. Moreover, the expression of MaNAG3 and MaNAG4 regulated by chitinous substrates is the first evidence of the involvement of putative GH3 NAGases in physiological cell processes in entomopathogens, indicating their potential influence on cell differentiation during the M. anisopliae life cycle.

15.
BMC Genomics ; 18(1): 294, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28403818

RESUMEN

BACKGROUND: The absence of Argonaute genes in the fungal pathogen Cryptococcus gattii R265 and other VGII strains indicates that yeasts of this genotype cannot have a functional RNAi pathway, an evolutionarily conserved gene silencing mechanism performed by small RNAs. The success of the R265 strain as a pathogen that caused the Pacific Northwest and Vancouver Island outbreaks may imply that RNAi machinery loss could be beneficial under certain circumstances during evolution. As a result, a hypermutant phenotype would be created with high rates of genome retrotransposition, for instance. This study therefore aimed to evaluate in silicio the effect of retrotransposons and their control mechanisms by small RNAs on genomic stability and synteny loss of C. gattii R265 through retrotransposons sequence comparison and orthology analysis with other 16 C. gattii genomic sequences available. RESULTS: Retrotransposon mining identified a higher sequence count to VGI genotype compared to VGII, VGIII, and VGIV. However, despite the lower retrotransposon number, VGII exhibited increased synteny loss and genome rearrangement events. RNA-Seq analysis indicated highly expressed retrotransposons as well as sRNA production. CONCLUSIONS: Genome rearrangement and synteny loss may suggest a greater retrotransposon mobilization caused by RNAi pathway absence, but the effective presence of sRNAs that matches retrotransposon sequences means that an alternative retrotransposon silencing mechanism could be active in genomic integrity maintenance of C. gattii VGII strains.


Asunto(s)
Cryptococcus gattii/genética , ARN Interferente Pequeño/genética , Retroelementos , Análisis de Secuencia de ARN/métodos , Evolución Biológica , Simulación por Computador , Genotipo , Filogenia , ARN de Hongos/genética , Eliminación de Secuencia , Sintenía
16.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718785

RESUMEN

Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Éteres/farmacología , Hongos/crecimiento & desarrollo , Hongos/efectos de la radiación , Poliuretanos/farmacología , Rayos Ultravioleta , Biopelículas/crecimiento & desarrollo , Hongos/efectos de los fármacos , Hongos/ultraestructura , Procesamiento de Imagen Asistido por Computador , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
17.
BMC Genomics ; 17(Suppl 8): 736, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27801295

RESUMEN

BACKGROUND: The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). RESULTS: Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. CONCLUSIONS: Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process.


Asunto(s)
Genoma Fúngico , Genómica , Metarhizium/genética , Metarhizium/metabolismo , Metabolismo Secundario/genética , Transcriptoma , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Orden Génico , Genómica/métodos , Interacciones Huésped-Patógeno , Metarhizium/clasificación , Filogenia , Carácter Cuantitativo Heredable , Garrapatas/microbiología
18.
BMC Genomics ; 15: 822, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25263348

RESUMEN

BACKGROUND: Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. RESULTS: We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. CONCLUSIONS: The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.


Asunto(s)
Proteínas Fúngicas/genética , Genoma Fúngico , Metarhizium/genética , Animales , Hibridación Genómica Comparativa , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Metarhizium/clasificación , Filogenia , Rhipicephalus/metabolismo , Rhipicephalus/microbiología , Análisis de Secuencia de ARN
19.
Fungal Genet Biol ; 60: 53-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23954835

RESUMEN

The pathogenic yeast Cryptococcus neoformans secretes numerous proteins, such as heat shock proteins, by unconventional mechanisms during its interaction with host cells. Hsp70 is a conserved chaperone that plays important roles in various cellular processes, including the interaction of fungi with host immune cells. Here, we report that sera from individuals with cryptococcosis infection recognize a recombinant C. neoformans Hsp70 (Cn_rHsp70). Moreover, immunofluorescence assays using antibodies against Cn_rHsp70 revealed the localization of this protein at the cell surface mainly in association with the capsular network. We found that the addition of Cn_rHsp70 positively modulated the interaction of C. neoformans with human alveolar epithelial cells and decreased fungal killing by mouse macrophages, without affecting phagocytosis rates. Immunofluorescence analysis showed that there was a competitive association among the receptor, GXM and Cn_rHsp70, indicating that the Hsp70-binding sites in host cells appear to be shared by glucuronoxylomannan (GXM), the major capsular antigen in C. neoformans. Our observations suggest additional mechanisms by which Hsp70 influences the interaction of C. neoformans with host cells.


Asunto(s)
Cryptococcus neoformans/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Anticuerpos Antifúngicos/sangre , Anticuerpos Antifúngicos/inmunología , Sitios de Unión , Línea Celular , Criptococosis/inmunología , Cryptococcus neoformans/patogenicidad , Células Epiteliales/microbiología , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/inmunología , Interacciones Huésped-Patógeno , Humanos , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Fagocitosis/inmunología , Polisacáridos/metabolismo , Unión Proteica
20.
Fungal Genet Biol ; 60: 64-73, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23608320

RESUMEN

The principal capsular component of Cryptococcus neoformans, glucuronoxylomannan (GXM), interacts with surface glycans, including chitin-like oligomers. Although the role of GXM in cryptococcal infection has been well explored, there is no information on how chitooligomers affect fungal pathogenesis. In this study, surface chitooligomers of C. neoformans were blocked through the use of the wheat germ lectin (WGA) and the effects on animal pathogenesis, interaction with host cells, fungal growth and capsule formation were analyzed. Treatment of C. neoformans cells with WGA followed by infection of mice delayed mortality relative to animals infected with untreated fungal cells. This observation was associated with reduced brain colonization by lectin-treated cryptococci. Blocking chitooligomers also rendered yeast cells less efficient in their ability to associate with phagocytes. WGA did not affect fungal viability, but inhibited GXM release to the extracellular space and capsule formation. In WGA-treated yeast cells, genes that are involved in capsule formation and GXM traffic had their transcription levels decreased in comparison with untreated cells. Our results suggest that cellular pathways required for capsule formation and pathogenic mechanisms are affected by blocking chitin-derived structures at the cell surface of C. neoformans. Targeting chitooligomers with specific ligands may reveal new therapeutic alternatives to control cryptococcosis.


Asunto(s)
Cryptococcus neoformans/patogenicidad , Cápsulas Fúngicas/metabolismo , Fagocitosis/efectos de los fármacos , Polisacáridos/metabolismo , Aglutininas del Germen de Trigo/farmacología , Animales , Encéfalo/microbiología , Quitina/metabolismo , Criptococosis/tratamiento farmacológico , Criptococosis/patología , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Aglutininas del Germen de Trigo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA