Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 29(24): 7633-8, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535574

RESUMEN

Spinal muscular atrophy (SMA) is caused by homozygous mutation or deletion of the SMN1 gene encoding survival of motor neuron (SMN) protein, resulting in the selective loss of alpha-motor neurons. Humans typically have one or more copies of the SMN2 gene, the coding region of which is nearly identical to SMN1, except that a point mutation causes splicing out of exon 7 and production of a largely nonfunctional SMNDelta7 protein. The development of drugs that mitigate aberrant SMN2 splicing is an attractive therapeutic approach for SMA. A steric block antisense oligonucleotide (AO) has recently been developed that blocked an intronic splice suppressor element, and enhanced SMN2 exon 7 inclusion in SMA patient fibroblasts. Here, we show that periodic intracerebroventricular (ICV) delivery of this AO resulted in increased SMN expression in brain and spinal cord to as much as 50% of the level of healthy littermates. Real-time PCR of SMN2 transcripts confirmed the AO-mediated increase in full-length SMN. The AO-derived increase in SMN expression led to a concomitant improvement in bodyweight throughout the lifespan of the SMA animals. Treatment of SMA mice with AO also provided partial correction of motor deficits, manifest as improved righting response. Injections of a scrambled oligonucleotide had no effect on SMN expression or phenotype in the SMA mice. Our results validate that AOs that abrogate aberrant splicing of SMN2 are promising compounds for treating SMA.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Atrofia Muscular Espinal/patología , Oligonucleótidos Antisentido/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Exones , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Inyecciones Intraventriculares/métodos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Fenotipo , Mutación Puntual/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
2.
J Nanobiotechnology ; 7: 1, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19351396

RESUMEN

Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

3.
BMC Biotechnol ; 8: 35, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18384691

RESUMEN

BACKGROUND: Exon skipping oligonucleotides (ESOs) of 2'O-Methyl (2'OMe) and morpholino chemistry have been shown to restore dystrophin expression in muscle fibers from the mdx mouse, and are currently being tested in phase I clinical trials for Duchenne Muscular Dystrophy (DMD). However, ESOs remain limited in their effectiveness because of an inadequate delivery profile. Synthetic cationic copolymers of poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) are regarded as effective agents for enhanced delivery of nucleic acids in various applications. RESULTS: We examined whether PEG-PEI copolymers can facilitate ESO-mediated dystrophin expression after intramuscular injections into tibialis anterior (TA) muscles of mdx mice. We utilized a set of PEG-PEI copolymers containing 2 kDa PEI and either 550 Da or 5 kDa PEG, both of which bind 2'OMe ESOs with high affinity and form stable nanoparticulates with a relatively low surface charge. Three weekly intramuscular injections of 5 microg of ESO complexed with PEI2K-PEG550 copolymers resulted in about 500 dystrophin-positive fibers and about 12% of normal levels of dystrophin expression at 3 weeks after the initial injection, which is significantly greater than for injections of ESO alone, which are known to be almost completely ineffective. In an effort to enhance biocompatibility and cellular uptake, the PEI2K-PEG550 and PEI2K-PEG5K copolymers were functionalized by covalent conjugation with nanogold (NG) or adsorbtion of colloidal gold (CG), respectively. Surprisingly, using the same injection and dosing regimen, we found no significant difference in dystrophin expression by Western blot between the NG-PEI2K-PEG550, CG-PEI2K-PEG5K, and non-functionalized PEI2K-PEG550 copolymers. Dose-response experiments using the CG-PEI2K-PEG5K copolymer with total ESO ranging from 3-60 microg yielded a maximum of about 15% dystrophin expression. Further improvements in dystrophin expression up to 20% of normal levels were found at 6 weeks after 10 twice-weekly injections of the NG-PEI2K-PEG550 copolymer complexed with 5 microg of ESO per injection. This injection and dosing regimen showed over 1000 dystrophin-positive fibers. H&E staining of all treated muscle groups revealed no overt signs of cytotoxicity. CONCLUSION: We conclude that PEGylated PEI2K copolymers are efficient carriers for local delivery of 2'OMe ESOs and warrant further development as potential therapeutics for treatment of DMD.


Asunto(s)
ADN/administración & dosificación , Portadores de Fármacos/química , Distrofina/metabolismo , Iminas/química , Músculo Esquelético/metabolismo , Nanoestructuras/química , Polietilenglicoles/química , Polietilenos/química , Animales , ADN/genética , Distrofina/genética , Exones/genética , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Transfección/métodos
4.
Brain Res ; 1408: 81-7, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21784415

RESUMEN

Aldehyde dehydrogenase 1A1 (ALDH1A1) is a member of a superfamily of detoxification enzymes found in various tissues that participate in the oxidation of both aliphatic and aromatic aldehydes. In the brain, ALDH1A1 participates in the metabolism of catecholamines including dopamine (DA) and norepinephrine, but is uniquely expressed in a subset of dopaminergic (DAergic) neurons in the ventral mesencephalon where it converts 3,4-dihydroxyphenylacetaldehyde, a potentially toxic aldehyde, to 3,4-dihydroxyphenylacetic acid, a non toxic metabolite. Therefore, loss of ALDH1A1 expression could be predicted to alter DA metabolism and potentially increase neurotoxicity in ventral mesencephalic DA neurons. Recent reports of reduced levels of expression of both Aldh1a1 mRNA and protein in the substantia nigra (SN) of Parkinson's disease patients suggest possible involvement of ALDH1A1 in this progressive neurodegenerative disease. The present study used an Aldh1a1 null mouse to assess the influence of ALDH1A1 on the function and maintenance of the DAergic system. Results indicate that the absence of Aldh1a1 did not negatively affect growth and development of SN DA neurons nor alter protein expression levels of tyrosine hydroxylase, the DA transporter or vesicular monoamine transporter 2. However, absence of Aldh1a1 significantly increased basal extracellular DA levels, decreased KCl and amphetamine stimulated DA release and decreased DA re-uptake and resulted in more tyrosine hydroxylase expressing neurons in the SN than in wildtype animals. These data suggest that in young adult animals with deletion of the Aldh1a1 gene there is altered DA metabolism and dysfunction of the DA transporter and DA release mechanisms.


Asunto(s)
Aldehído Deshidrogenasa/genética , Cuerpo Estriado/fisiología , Dopamina/fisiología , Sustancia Negra/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Recuento de Células , Dopamina/metabolismo , Neuronas Dopaminérgicas/enzimología , Genotipo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microdiálisis , Retinal-Deshidrogenasa , Tirosina 3-Monooxigenasa/metabolismo
5.
Hum Gene Ther ; 19(8): 795-806, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18647087

RESUMEN

Exon-skipping oligonucleotides (ESOs) with 2'-O-methyl modifications are promising compounds for the treatment of Duchenne muscular dystrophy (DMD). However, the usefulness of these compounds is limited by their poor delivery profile to muscle tissue in vivo. We previously established that copolymers made of poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) enhanced ESO transfection in skeletal muscle of mdx mice, resulting in widespread distribution of dystrophin-positive fibers, but limited dystrophin expression by Western blot. In an attempt to improve ESO delivery and dystrophin expression, a new formulation of PEG-PEI copolymer was used, along with functionalized derivatives containing either the cell-penetrating peptide TAT (trans-activator of transcription), adsorbed colloidal gold (CG), or both TAT and CG. Tibialis anterior muscles were given three intramuscular injections of various PEG-PEI-ESO polyplexes (3 days apart; 5 microg of ESO per injection) and muscles were harvested 3 weeks after the first injection. Surface modifications of PEG-PEI copolymers with TAT showed the highest level of dystrophin recovery, with a 6-fold increase in dystrophin-positive fibers compared with ESO alone and up to 30% of normal dystrophin expression by Western blot. The adsorption of CG to either PEG-PEI or TAT-PEG-PEI copolymers showed no further improvement in dystrophin expression. Our data indicate that TAT-modified PEG-PEI copolymers are effective carriers for delivery of ESOs to skeletal muscle and are promising compounds for the therapeutic treatment of DMD.


Asunto(s)
Distrofina/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos/administración & dosificación , Polietilenglicoles/administración & dosificación , Polietileneimina/administración & dosificación , Animales , Portadores de Fármacos/química , Distrofina/genética , Exones , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos , Inyecciones Intramusculares , Masculino , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA