RESUMEN
Pathogenic lymphocytes initiate the development of chronic inflammatory diseases. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) (encoded by Csf2) is a key communicator between pathogenic lymphocytes and tissue-invading inflammatory phagocytes. However, the molecular properties of GM-CSF-producing cells and the mode of Csf2 regulation in vivo remain unclear. To systematically study and manipulate GM-CSF+ cells and their progeny in vivo, we generated a fate-map and reporter of GM-CSF expression mouse strain (FROG). We mapped the phenotypic and functional profile of auto-aggressive T helper (Th) cells during neuroinflammation and identified the signature and pathogenic memory of a discrete encephalitogenic Th subset. These cells required interleukin-23 receptor (IL-23R) and IL-1R but not IL-6R signaling for their maintenance and pathogenicity. Specific ablation of this subset interrupted the inflammatory cascade, despite the unperturbed tissue accumulation of other Th subsets (e.g., Th1 and Th17), highlighting that GM-CSF expression not only marks pathogenic Th cells, but that this subset mediates immunopathology and tissue destruction.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1beta/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Inflamación/genética , Inflamación/patología , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR6/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system underpinned by partially understood genetic risk factors and environmental triggers and their undefined interactions1,2. Here we investigated the peripheral immune signatures of 61 monozygotic twin pairs discordant for MS to dissect the influence of genetic predisposition and environmental factors. Using complementary multimodal high-throughput and high-dimensional single-cell technologies in conjunction with data-driven computational tools, we identified an inflammatory shift in a monocyte cluster of twins with MS, coupled with the emergence of a population of IL-2 hyper-responsive transitional naive helper T cells as MS-related immune alterations. By integrating data on the immune profiles of healthy monozygotic and dizygotic twin pairs, we estimated the variance in CD25 expression by helper T cells displaying a naive phenotype to be largely driven by genetic and shared early environmental influences. Nonetheless, the expanding helper T cells of twins with MS, which were also elevated in non-twin patients with MS, emerged independent of the individual genetic makeup. These cells expressed central nervous system-homing receptors, exhibited a dysregulated CD25-IL-2 axis, and their proliferative capacity positively correlated with MS severity. Together, our matched-pair analysis of the extended twin approach allowed us to discern genetically and environmentally determined features of an MS-associated immune signature.
Asunto(s)
Esclerosis Múltiple , Predisposición Genética a la Enfermedad/genética , Humanos , Interleucina-2/genética , Ligando OX40 , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genéticaRESUMEN
Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.
Asunto(s)
Envejecimiento/inmunología , Sistema Nervioso Central/inmunología , Leucocitos/inmunología , Macrófagos/inmunología , Animales , Células Dendríticas/inmunología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/inmunología , Análisis de la Célula IndividualRESUMEN
Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment.
Asunto(s)
Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Fagocitos/inmunología , Animales , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Reacción en Cadena de la PolimerasaRESUMEN
Guillain-Barré syndrome (GBS) is a rare yet potentially life-threatening disorder of the peripheral nervous system (PNS), characterized by substantial clinical heterogeneity. Although classified as an autoimmune disease, the immune mechanisms underpinning distinct GBS subtypes remain largely elusive. Traditionally considered primarily antibody-mediated, the pathophysiology of GBS lacks clarity, posing challenges in the development of targeted and effective treatments. Nevertheless, recent investigations have substantially expanded our understanding of the disease, revealing an involvement of autoreactive T cell immunity in a major subtype of GBS patients and opening new biomedical perspectives. This review highlights these discoveries and offers a comprehensive overview of current knowledge about GBS, including ongoing challenges in disease management.
RESUMEN
Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement and bulbar-associated dysfunction. The presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01â¼DQB1*05:01, supports an autoimmune basis. In this study, a multicentric human leukocyte antigen (HLA) study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05â¼DQB1*05:01, HLA-DQA1*01:01â¼DQB1*05:01 and HLA-DQA1*01:04â¼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11â years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared with one control carrying HLA-DQA1*01:05â¼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T-cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.
Asunto(s)
Cadenas beta de HLA-DQ , Cadenas HLA-DRB1 , Humanos , Cadenas HLA-DRB1/genética , Masculino , Cadenas beta de HLA-DQ/genética , Femenino , Persona de Mediana Edad , Adulto , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/inmunología , Anciano , Autoanticuerpos/inmunología , Predisposición Genética a la Enfermedad , Adulto Joven , Adolescente , GenotipoRESUMEN
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has emerged as a crucial cytokine produced by auto-reactive T helper (Th) cells that initiate tissue inflammation. Multiple cell types can sense GM-CSF, but the identity of the pathogenic GM-CSF-responsive cells is unclear. By using conditional gene targeting, we systematically deleted the GM-CSF receptor (Csf2rb) in specific subpopulations throughout the myeloid lineages. Experimental autoimmune encephalomyelitis (EAE) progressed normally when either classical dendritic cells (cDCs) or neutrophils lacked GM-CSF responsiveness. The development of tissue-invading monocyte-derived dendritic cells (moDCs) was also unperturbed upon Csf2rb deletion. Instead, deletion of Csf2rb in CCR2(+)Ly6C(hi) monocytes phenocopied the EAE resistance seen in complete Csf2rb-deficient mice. High-dimensional analysis of tissue-infiltrating moDCs revealed that GM-CSF initiates a combination of inflammatory mechanisms. These results indicate that GM-CSF signaling controls a pathogenic expression signature in CCR2(+)Ly6C(hi) monocytes and their progeny, which was essential for tissue damage.
Asunto(s)
Autoinmunidad/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Inflamación/inmunología , Monocitos/inmunología , Receptores CCR2/inmunología , Transducción de Señal/inmunología , Animales , Antígenos Ly/genética , Antígenos Ly/inmunología , Antígenos Ly/metabolismo , Autoinmunidad/genética , Subunidad beta Común de los Receptores de Citocinas/genética , Subunidad beta Común de los Receptores de Citocinas/inmunología , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Ratones Noqueados , Ratones Transgénicos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/inmunología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT5/inmunología , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transcriptoma/inmunologíaRESUMEN
BACKGROUND AND PURPOSE: Infections and vaccinations have been identified as potential immunological triggers of neuralgic amyotrophy (NA), but the exact type and frequency of the preceding agents is unknown. METHODS: This was a multicentre, prospective, observational, matched case-control study. NA was diagnosed by neuromuscular experts according to validated clinical criteria and electrodiagnostic studies. Clinical data and biological samples of NA patients were collected within 90 days from disease onset between June 2018 and December 2023. All NA patients were asked about prior infection and vaccination in the month before disease onset. Serological tests for hepatitis E virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Epstein-Barr virus, cytomegalovirus, parvovirus B19, varicella-zoster virus, Borrelia burgdorferi, Mycoplasma pneumoniae and Bartonella henselae were performed in a central laboratory. Each case was matched with a healthy control for age, sex, place of residence and time of blood collection. RESULTS: Fifty-seven patients and corresponding controls were included. The mean age was 45 years for both groups. NA onset was preceded by a symptomatic infectious trigger confirmed by microbiological tests in 15/57 (26.3%) patients. Coronavirus disease 2019 vaccination was considered a potential trigger in 7/57 (12.3%) subjects. An acute viral infection was associated with a bilateral involvement of the brachial plexus (p = 0.003, Cramèr's V = 0.43). CONCLUSIONS: Confirmed immune triggers (infection or vaccination) preceded disease onset in 22/57 (38.6%) NA cases. We suggest to test NA patients in the acute phase for intracellular antigens, especially in the case of concomitant bilateral involvement and hepatitis.
RESUMEN
BACKGROUND: Acute hepatitis E virus (HEV) infection has recently emerged as a potential trigger for acute dysimmune neuropathies, but prospective controlled studies are lacking. AIMS: To compare the frequency of concomitant acute HEV infection in patients with neuralgic amyotrophy (NA), Guillain-Barré syndrome (GBS), and Bell's palsy with a matched control population. METHODS: Swiss multicenter, prospective, observational, matched case-control study over 3 years (September 2019-October 2022). Neurological cases with NA, GBS, or Bell's palsy were recruited within 1 month of disease onset. Healthy controls were matched for age, sex, geographical location, and timing of blood collection. Diagnostic criteria for acute hepatitis E were reactive serum anti-HEV IgM and IgG assays (ELISA test) and/or HEV RNA detection in serum by real-time polymerase chain reaction (RT-PCR). RT-PCR was performed on sera to confirm IgM positivity. RESULTS: We included 180 patients (59 GBS, 51 NA, 70 Bell's palsy cases) and corresponding matched controls (blood donors) with median age 51 years for both groups and equal gender distribution. Six IgM+ cases were detected in the NA, two in the GBS, and none in the Bell's palsy group. Two controls were anti-HEV IgM-positive. At disease onset, most cases with acute HEV infection had increased liver enzymes. A moderate association (p = 0.027, Fisher's exact test; Cramér's V = -0.25) was observed only between acute HEV infection and NA. CONCLUSION: This prospective observational study suggests an association between concomitant acute HEV infection and NA, but not with GBS or Bell's palsy.
Asunto(s)
Parálisis de Bell , Parálisis Facial , Síndrome de Guillain-Barré , Virus de la Hepatitis E , Hepatitis E , Humanos , Persona de Mediana Edad , Virus de la Hepatitis E/genética , Hepatitis E/complicaciones , Hepatitis E/epidemiología , Hepatitis E/diagnóstico , Estudios de Casos y Controles , Estudios Prospectivos , Parálisis de Bell/complicaciones , Síndrome de Guillain-Barré/epidemiología , Anticuerpos Antihepatitis , Enfermedad Aguda , Inmunoglobulina MRESUMEN
Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood-brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret ), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti-ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret ;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.
Asunto(s)
Barrera Hematoencefálica/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Homeostasis/inmunología , Leucocitos/inmunología , Pericitos/inmunología , Animales , Barrera Hematoencefálica/patología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Homeostasis/genética , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Leucocitos/patología , Ratones , Ratones Transgénicos , Pericitos/patología , Proteínas Proto-Oncogénicas c-sis/deficiencia , Proteínas Proto-Oncogénicas c-sis/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunologíaRESUMEN
BACKGROUND: Azathioprine is a widely prescribed drug for patients with chronic inflammatory diseases such as myasthenia gravis or organ transplant recipients. Azathioprine exerts immunosuppressive effects by inhibiting intracellular purine synthesis and reducing the numbers of circulating B and T lymphocytes. Case reports indicate increased risk for serious infections that can occur despite regular measurements of lymphocyte counts during azathioprine therapy. OBJECTIVE: We sought to comprehensively investigate therapy-associated patient risks and the underlying immune dysfunction of azathioprine use. METHODS: Peripheral blood leukocytes were analyzed using single-cell mass and spectral flow cytometry to detect specific effects of azathioprine use on the systemic immune signature. Therapy-associated clinical features were analyzed in 2 independent cohorts of myasthenia gravis patients. RESULTS: Azathioprine therapy selectively induced pronounced CD56dimCD16+ natural killer cell depletion and concomitant IFN-γ deficiency. Cytokine profiling revealed a specific contraction of classical TH1 cells during azathioprine treatment. We further observed an increased occurrence of reactivation of endogenous latent herpesviruses in the azathioprine-treated group versus in patients with myasthenia gravis who were not receiving immunomodulatory treatment; this increased occurrence was validated in an independent cohort. CONCLUSION: Our study highlights the risk of development of adverse events during azathioprine therapy and suggests that natural killer cell monitoring could be valuable in clinical practice.
Asunto(s)
Herpesviridae , Miastenia Gravis , Humanos , Azatioprina/efectos adversos , Células Asesinas Naturales , Interferón gamma/farmacología , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/inducido químicamenteRESUMEN
BACKGROUND: Cardiac troponin (cTn) T and cTnI are considered cardiac specific and equivalent in the diagnosis of acute myocardial infarction. Previous studies suggested rare skeletal myopathies as a noncardiac source of cTnT. We aimed to confirm the reliability/cardiac specificity of cTnT in patients with various skeletal muscle disorders (SMDs). METHODS: We prospectively enrolled patients presenting with muscular complaints (≥2 weeks) for elective evaluation in 4 hospitals in 2 countries. After a cardiac workup, patients were adjudicated into 3 predefined cardiac disease categories. Concentrations of cTnT/I and resulting cTnT/I mismatches were assessed with high-sensitivity (hs-) cTnT (hs-cTnT-Elecsys) and 3 hs-cTnI assays (hs-cTnI-Architect, hs-cTnI-Access, hs-cTnI-Vista) and compared with those of control subjects without SMD presenting with adjudicated noncardiac chest pain to the emergency department (n=3508; mean age, 55 years; 37% female). In patients with available skeletal muscle biopsies, TNNT/I1-3 mRNA differential gene expression was compared with biopsies obtained in control subjects without SMD. RESULTS: Among 211 patients (mean age, 57 years; 42% female), 108 (51%) were adjudicated to having no cardiac disease, 44 (21%) to having mild disease, and 59 (28%) to having severe cardiac disease. hs-cTnT/I concentrations significantly increased from patients with no to those with mild and severe cardiac disease for all assays (all P<0.001). hs-cTnT-Elecsys concentrations were significantly higher in patients with SMD versus control subjects (median, 16 ng/L [interquartile range (IQR), 7-32.5 ng/L] versus 5 ng/L [IQR, 3-9 ng/L]; P<0.001), whereas hs-cTnI concentrations were mostly similar (hs-cTnI-Architect, 2.5 ng/L [IQR, 1.2-6.2 ng/L] versus 2.9 ng/L [IQR, 1.8-5.0 ng/L]; hs-cTnI-Access, 3.3 ng/L [IQR, 2.4-6.1 ng/L] versus 2.7 ng/L [IQR, 1.6-5.0 ng/L]; and hs-cTnI-Vista, 7.4 ng/L [IQR, 5.2-13.4 ng/L] versus 7.5 ng/L [IQR, 6-10 ng/L]). hs-cTnT-Elecsys concentrations were above the upper limit of normal in 55% of patients with SMD versus 13% of control subjects (P<0.01). mRNA analyses in skeletal muscle biopsies (n=33), mostly (n=24) from individuals with noninflammatory myopathy and myositis, showed 8-fold upregulation of TNNT2, encoding cTnT (but none for TNNI3, encoding cTnI) versus control subjects (n=16, PWald<0.001); the expression correlated with pathological disease activity (R=0.59, Pt-statistic<0.001) and circulating hs-cTnT concentrations (R=0.26, Pt-statistic=0.031). CONCLUSIONS: In patients with active chronic SMD, elevations in cTnT concentrations are common and not attributable to cardiac disease in the majority. This was not observed for cTnI and may be explained in part by re-expression of cTnT in skeletal muscle. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03660969.
Asunto(s)
Cardiopatías/metabolismo , Enfermedades Musculares/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo , Biomarcadores , Estudios de Casos y Controles , Femenino , Cardiopatías/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Musculares/diagnóstico , Estudios Prospectivos , ARN Mensajero/análisis , Reproducibilidad de los Resultados , Troponina I/genética , Troponina T/genéticaRESUMEN
PURPOSE OF REVIEW: This review highlights recent knowledge on the diagnosis and treatment of immune checkpoint inhibitor-induced neurological side effects (irNAE) focussing on the neuromuscular system. RECENT FINDINGS: irNAEs mainly resemble sporadic neuromuscular autoimmune diseases and paraneoplastic neurological syndromes. However, neurological symptoms may be unspecific (muscle weakness, fatigue) in the oncological setting and carry the risk of misdiagnosis and delayed therapeutic intervention. The role of disease-specific neuromuscular autoantibodies in the diagnosis is controversial as preexisting autoantibodies may otherwise be present before immune checkpoint inhibitor (ICI) treatment without clinical symptoms and may not develop in case of irNAE manifestation. A new necrotising form of myositis (irMyositis) has been described presenting with facial weakness and ptosis mimicking myasthenia gravis. It comes along with a high rate of severe myocarditis accounting for a triad overlap syndrome (myasthenia/myositis/myocarditis). The role of modern biologicals in the treatment of irNAEs has to be determined. SUMMARY: irNAEs are rare but carry the risk of permanent morbidity and mortality. Early suspicion and diagnosis are key to prevent neurological sequelae. Beyond interruption of ICI administration, treatment corresponds to sporadic autoimmune diseases. The myasthenia/myositis/myocarditis overlap syndrome deserves special attention as it carries the highest risk of mortality. The role of neurotoxic pretreatment regimens, preexisting subclinical neurological autoimmune diseases and the risk of ICI-re-challenge after irNAEs has to be further investigated.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Miastenia Gravis , Miocarditis , Miositis , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Sistema Nervioso Periférico , Miastenia Gravis/inducido químicamente , Miastenia Gravis/tratamiento farmacológico , Miositis/inducido químicamente , Miositis/tratamiento farmacológico , AutoanticuerposRESUMEN
Myasthenia gravis (MG) is an autoimmune disease characterized by impaired neuromuscular signaling due to autoantibodies targeting the acetylcholine receptor. Although its auto-antigens and effector mechanisms are well defined, the cellular and molecular drivers underpinning MG remain elusive. Here, we employed high-dimensional single-cell mass and spectral cytometry of blood and thymus samples from MG patients in combination with supervised and unsupervised machine-learning tools to gain insight into the immune dysregulation underlying MG. By creating a comprehensive immune map, we identified two dysregulated subsets of inflammatory circulating memory T helper (Th) cells. These signature ThCD103 and ThGM cells populated the diseased thymus, were reduced in the blood of MG patients, and were inversely correlated with disease severity. Both signature Th subsets rebounded in the blood of MG patients after surgical thymus removal, indicative of their role as cellular markers of disease activity. Together, this in-depth analysis of the immune landscape of MG provides valuable insight into disease pathogenesis, suggests novel biomarkers and identifies new potential therapeutic targets for treatment.
Asunto(s)
Inmunofenotipificación/métodos , Miastenia Gravis/inmunología , Miastenia Gravis/patología , Análisis de la Célula Individual , Linfocitos T/patología , Adulto , Anciano , Anciano de 80 o más Años , Autoanticuerpos , Autoinmunidad , Linfocitos B/inmunología , Biomarcadores , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Miastenia Gravis/sangre , Receptores Colinérgicos/inmunología , Linfocitos T/inmunología , Timectomía , TimoRESUMEN
BACKGROUND: We report a rare case of Toscana virus infection imported into Switzerland in a 23-year old man who travelled to Imperia (Italy) 10 days before onset of symptoms. Symptoms included both meningitis and as well epididymitis. This is only the fourth case of Toscana virus reported in Switzerland. CASE PRESENTATION: The patient presented with lymphocytic meningitis and scrotal pain due to epididymitis. Meningitis was initially treated with ceftriaxone. Herpes simplex, tick-borne encephalitis, enterovirus, measles, mumps, rubella and Treponema pallidum were excluded with specific polymerase chain reaction (PCR) or serology. In support of routine diagnostic PCR and serology assays, unbiased viral metagenomic sequencing was performed of cerebrospinal fluid and serum. Toscana virus infection was identified in cerebrospinal fluid and the full coding sequence could be obtained. Specific PCR in cerebrospinal fluid and blood and serology with Immunoglobulin (Ig) M and IgG against Toscana virus confirmed our diagnosis. Neurological symptoms recovered spontaneously after 5 days. CONCLUSIONS: This case of Toscana virus infection highlights the benefits of unbiased metagenomic sequencing to support routine diagnostics in rare or unexpected viral infections. With increasing travel histories of patients, physicians should be aware of imported Toscana virus as the agent for viral meningitis and meningoencephalitis.
Asunto(s)
Infecciones por Bunyaviridae , Epididimitis , Meningitis Viral , Metagenómica/métodos , Virus de Nápoles de la Fiebre de la Mosca de los Arenales , Adulto , Anticuerpos Antivirales/sangre , Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/virología , Epididimitis/diagnóstico , Epididimitis/inmunología , Epididimitis/virología , Humanos , Italia , Masculino , Meningitis Viral/diagnóstico , Meningitis Viral/inmunología , Meningitis Viral/virología , Técnicas de Diagnóstico Molecular , ARN Viral/genética , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/genética , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/inmunología , Análisis de Secuencia de ARN , Suiza , Adulto JovenRESUMEN
BACKGROUND: Oligodendrocytes are myelinating cells of the central nervous system which support functionally, structurally, and metabolically neurons. Mature oligodendrocytes are generally believed to be mere targets of destruction in the context of neuroinflammation and tissue damage, but their real degree of in vivo plasticity has become a matter of debate. We thus investigated the in vivo dynamic, actin-related response of these cells under different kinds of demyelinating stress. METHODS: We used a novel mouse model (oLucR) expressing luciferase in myelin oligodendrocyte glycoprotein-positive oligodendrocytes under the control of a ß-actin promoter. Activity of this promoter served as surrogate for dynamics of the cytoskeleton gene transcription through recording of in vivo bioluminescence following diphtheria toxin-induced oligodendrocyte death and autoimmune demyelination. Cytoskeletal gene expression was quantified from mature oligodendrocytes directly isolated from transgenic animals through cell sorting. RESULTS: Experimental demyelinating setups augmented oligodendrocyte-specific in vivo bioluminescence. These changes in luciferase signal were confirmed by further ex vivo analysis of the central nervous system tissue from oLucR mice. Increase in bioluminescence upon autoimmune inflammation was parallel to an oligodendrocyte-specific increased transcription of ß-tubulin. CONCLUSIONS: Mature oligodendrocytes acutely increase their cytoskeletal plasticity in vivo during demyelination. They are therefore not passive players under demyelinating conditions but can rather react dynamically to external insults.
Asunto(s)
Enfermedades del Sistema Nervioso Central/patología , Sistema Nervioso Central/metabolismo , Citoesqueleto/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Oligodendroglía/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Citocinas/metabolismo , Toxina Diftérica/farmacología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/patología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Glicoproteína Mielina-Oligodendrócito/genéticaRESUMEN
Introduction: Statin use can lead to various muscle-related issues, including benign creatine kinase (CK) elevations, myalgias, toxic myopathies, rhabdomyolysis, and immune-mediated necrotizing myositis (IMNM), which primarily affects older males. IMNM presents with proximal muscle weakness, elevated CK levels, and specific antibodies. Case presentation: We describe a 72-year-old patient with muscle weakness persisting for over 3 years after statin therapy. Initially suspected to have a genetic disorder, further testing revealed elevated anti-3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) antibodies, indicating immune-mediated myopathy. Despite the absence of inflammatory changes on biopsy, the patient responded positively to immune therapy. Conclusion: This case highlights challenges in diagnosing immune-mediated myopathy, especially in older patients with atypical presentations. Testing for HMGCR antibodies can aid in diagnosis, particularly when inflammatory markers are absent. Awareness of red flags, such as delayed symptom onset and response to prednisone, is crucial for accurate diagnosis and management.
RESUMEN
Objectives: Daratumumab, a monoclonal antibody against CD38, is increasingly used in the treatment of multiple myeloma, other hematological malignancies and autoimmune diseases. Little is known about its CNS toxicity. We present a case of a patient with POEMS syndrome (syndrome of polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy and skin changes) who developed an acute leukoencephalopathy shortly after initiation of therapy with daratumumab. Methods: Case report following the CARE case report guidelines. Results: The patient presented with symptoms of headache and diffuse worsening of a pre-existing tetraparesis. MRI showed a rapidly progressive leukoencephalopathy. Extensive diagnostic evaluation revealed no specific cause, suggesting the leukoencephalopathy to be caused by daratumumab. Discussion: Our report highlights a probably rare, but clinically significant adverse effect of daratumumab and underlines the necessity of raised vigilance for neurological side effects in patients treated with daratumumab.