Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Dev Biol ; 501: 39-59, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37301464

RESUMEN

The vertebrate head mesoderm provides the heart, the great vessels, some smooth and most head skeletal muscle, in addition to parts of the skull. It has been speculated that the ability to generate cardiac and smooth muscle is the evolutionary ground-state of the tissue. However, whether indeed the entire head mesoderm has generic cardiac competence, how long this may last, and what happens as cardiac competence fades, is not clear. Bone morphogenetic proteins (Bmps) are known to promote cardiogenesis. Using 41 different marker genes in the chicken embryo, we show that the paraxial head mesoderm that normally does not engage in cardiogenesis has the ability to respond to Bmp for a long time. However, Bmp signals are interpreted differently at different time points. Up to early head fold stages, the paraxial head mesoderm is able to read Bmps as signal to engage in the cardiac programme; the ability to upregulate smooth muscle markers is retained slightly longer. Notably, as cardiac competence fades, Bmp promotes the head skeletal muscle programme instead. The switch from cardiac to skeletal muscle competence is Wnt-independent as Wnt caudalises the head mesoderm and also suppresses Msc-inducing Bmp provided by the prechordal plate, thus suppressing both the cardiac and the head skeletal muscle programmes. Our study for the first time suggests a specific transition state in the embryo when cardiac competence is replaced by skeletal muscle competence. It sets the stage to unravel the cardiac-skeletal muscle antagonism that is known to partially collapse in heart failure.


Asunto(s)
Proteínas Morfogenéticas Óseas , Mesodermo , Animales , Embrión de Pollo , Mesodermo/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Cabeza , Cráneo/metabolismo , Músculo Esquelético/metabolismo , Regulación del Desarrollo de la Expresión Génica
2.
Semin Cell Dev Biol ; 91: 31-44, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29331210

RESUMEN

Craniofacial muscles, muscles that move the eyes, control facial expression and allow food uptake and speech, have long been regarded as a variation on the general body muscle scheme. However, evidence has accumulated that the function of head muscles, their developmental anatomy and the underlying regulatory cascades are distinct. This article reviews the key aspects of craniofacial muscle and muscle stem cell formation and discusses how this differs from the trunk programme of myogenesis; we show novel RNAseq data to support this notion. We also trace the origin of head muscle in the chordate ancestors of vertebrates and discuss links with smooth-type muscle in the primitive chordate pharynx. We look out as to how the special properties of head muscle precursor and stem cells, in particular their competence to contribute to the heart, could be exploited in regenerative medicine.


Asunto(s)
Ojo/embriología , Cabeza/embriología , Mesodermo/embriología , Músculo Esquelético/embriología , Animales , Neuronas Colinérgicas/citología , Neuronas Colinérgicas/metabolismo , Ojo/inervación , Regulación del Desarrollo de la Expresión Génica , Cabeza/inervación , Mesodermo/citología , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/inervación , Mioblastos/citología , Mioblastos/metabolismo , Vertebrados/embriología , Vertebrados/genética
3.
Dev Biol ; 430(1): 90-104, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28807781

RESUMEN

Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.


Asunto(s)
Pollos/metabolismo , Proteínas de Homeodominio/metabolismo , Movimiento , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Desarrollo de Músculos/genética , Mioblastos/citología , Mioblastos/metabolismo , Fenotipo , Somitos/metabolismo
4.
Dev Dyn ; 244(10): 1202-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26228689

RESUMEN

The early axon scaffold is the first axonal structure to appear in the rostral brain of vertebrates, paving the way for later, more complex connections. Several early axon scaffold components are conserved between all vertebrates; most notably two main ventral longitudinal tracts, the tract of the postoptic commissure and the medial longitudinal fascicle. While the overall structure is remarkably similar, differences both in the organization and the development of the early tracts are apparent. This review will bring together extensive data from the last 25 years in different vertebrates and for the first time, the timing and anatomy of these early tracts have been directly compared. Representatives of major vertebrate clades, including cat shark, Xenopus, chick, and mouse embryos, will be compared using immunohistochemistry staining based on previous results. There is still confusion over the nomenclature and homology of these tracts which this review will aim to address. The discussion here is relevant both for understanding the evolution of the early axon scaffold and for future studies into the molecular regulation of its formation.


Asunto(s)
Axones , Evolución Biológica , Encéfalo/embriología , Vertebrados/embriología , Animales , Músculos Masticadores/inervación
5.
Dev Dyn ; 243(3): 428-39, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23417991

RESUMEN

BACKGROUND: Dact gene family encodes multifunctional proteins that are important modulators of Wnt and TGF-ß signaling pathways. Given that these pathways coordinate multiple steps of limb development, we investigated the expression pattern of the two chicken Dact genes (Dact1 and Dact2) from early limb bud up to stages when several tissues are differentiating. RESULTS: During early limb development (HH24-HH30) Dact1 and Dact2 were mainly expressed in the cartilaginous rudiments of the appendicular skeleton and perichondrium, presenting expression profiles related, but distinct. At later stages of development (HH31-HH35), the main sites of Dact1 and Dact2 expression were the developing synovial joints. In this context, Dact1 expression was shown to co-localize with regions enriched in the nuclear ß-catenin protein, such as developing joint capsule and interzone. In contrast, Dact2 expression was restricted to the interzone surrounding the domains of bmpR-1b expression, a TGF-ß receptor with crucial roles during digit morphogenesis. Additional sites of Dact expression were the developing tendons and digit blastemas. CONCLUSIONS: Our data indicate that Dact genes are good candidates to modulate and, possibly, integrate Wnt and TGF-ß signaling during limb development, bringing new and interesting perspectives about the roles of Dact molecules in limb birth defects and human diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Aviares/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Miembro Posterior/embriología , Proteínas Nucleares/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Embrión de Pollo , Miembro Posterior/citología , Humanos , Membrana Sinovial/citología , Membrana Sinovial/embriología
6.
J Anat ; 219(2): 203-16, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21599661

RESUMEN

The arrangement of the early nerve connections in the embryonic vertebrate brain follows a well-conserved pattern, forming the early axon scaffold. The early axon tracts have been described in a number of anamniote species and in mouse, but a detailed analysis in chick is lacking. We have used immunostaining, axon tracing and in situ hybridisation to analyse the development of the early axon scaffold in the embryonic chick brain in relation to the neuromeric organisation of the brain. The first tract to be formed is the medial longitudinal fascicle (MLF), shortly followed by the tract of the postoptic commissure to pioneer the ventral longitudinal tract system. The MLF was found to originate from three different populations of neurones located in the diencephalon. Neurones close to the dorsal midline of the mesencephalon establish the descending tract of the mesencephalic nucleus of the trigeminus. Their axons pioneer the lateral longitudinal tract. At later stages, the tract of the posterior commissure emerges in the caudal pretectum as the first transversal tract. It is formed by dorsally projecting axons from neurones located in the ventral pretectum, and by ventrally projecting axons from neurones located in the dorsal pretectum. The organisation of neurones and axons in the chick brain is similar to that described in the mouse, though tracts form in a different order and appear more clearly distinguished than in the mammalian model.


Asunto(s)
Axones/fisiología , Encéfalo/embriología , Animales , Axones/metabolismo , Biomarcadores/análisis , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Embrión de Pollo , Vías Nerviosas/fisiología , Tubulina (Proteína)/análisis
7.
Dev Cell ; 5(3): 379-90, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12967558

RESUMEN

It is generally held that vertebrate muscle precursors depend totally on environmental cues for their development. We show that instead, somites are predisposed toward a particular myogenic program. This predisposition depends on the somite's axial identity: when flank somites are transformed into limb-level somites, either by shifting somitic boundaries with FGF8 or by overexpressing posterior Hox genes, they readily activate the program typical for migratory limb muscle precursors. The intrinsic control over myogenic programs can only be overridden by FGF4 signals provided by the apical ectodermal ridge of a developing limb.


Asunto(s)
Proteínas Aviares , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas de Homeodominio/fisiología , Músculo Esquelético/fisiología , Proteínas Proto-Oncogénicas/fisiología , Somitos/fisiología , Factores de Transcripción , Animales , Tipificación del Cuerpo , Diferenciación Celular , Embrión de Pollo , Señales (Psicología) , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero , Ambiente , Extremidades/embriología , Factor 4 de Crecimiento de Fibroblastos , Factor 8 de Crecimiento de Fibroblastos , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/fisiología , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Mesodermo/metabolismo , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Músculo Esquelético/embriología , Cuello/embriología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box , Proteínas Proto-Oncogénicas c-met/metabolismo , Codorniz , Transducción de Señal , Factores de Tiempo , Trasplantes
8.
Dev Genes Evol ; 219(9-10): 497-508, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20052486

RESUMEN

Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and Mstn mutations are responsible for the double muscling phenotype observed in many animal species. Moreover, Mstn is a positive regulator of adult muscle stem cell (satellite cell) quiescence, and hence, Mstn is being targeted in therapeutic approaches to muscle diseases. In order to better understand the mechanisms underlying Mstn regulation, we searched for the gene's proximal enhancer and promoter elements, using an evolutionary approach. We identified a 260-bp-long, evolutionary conserved region upstream of tetrapod Mstn and teleost mstn b genes. This region contains binding sites for TATA binding protein, Meis1, NF-Y, and for CREB family members, suggesting the involvement of cAMP in Myostatin regulation. The conserved fragment was able to drive reporter gene expression in C2C12 cells in vitro and in chicken somites in vivo; both normally express Mstn. In contrast, the reporter construct remained silent in the avian neural tube that normally does not express Mstn. This suggests that the identified element serves as a minimal promoter, harboring some spatial specificity. Finally, using bioinformatic approaches, we identified additional genes in the human genome associated with sequences similar to the Mstn proximal promoter/enhancer. Among them are genes important for myogenesis. This suggests that Mstn and these genes may form a synexpression group, regulated by a common signaling pathway.


Asunto(s)
Miostatina/genética , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Sitios de Unión , Elementos de Facilitación Genéticos , Humanos , Datos de Secuencia Molecular , Transcripción Genética
9.
Gene ; 599: 78-86, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27836664

RESUMEN

Vesicle shuttling is critical for many cellular and organismal processes, including embryonic development. GDI proteins contribute to vesicle shuttling by regulating the activity of Rab GTPases, controlling their cycling between the inactive cytosol and active membrane bound states. While identifying genes controlled by A-form DNA sequences we discovered a previously unknown member of the GDI family, GDI3. The GDI3 gene is found only in amphibians and fish and is developmentally expressed in Xenopus from neurula stages onwards in the neural plate, and subsequently in both dorsal and anterior structures. Depletion or over-expression of the GDI3 protein in Xenopus embryos gives rise to very similar phenotypes, suggesting that strict control of GDI3 protein levels is required for correct embryonic development. Our analysis suggests the evolutionary origins of GDI3 and that it is functionally distinct from GDI1. Predicted structural analysis of GDI3 suggests that the key difference between GDI1 and GDI3 lies in their lipid binding pockets.


Asunto(s)
Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Neurogénesis/fisiología , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Secuencia de Bases , Clonación Molecular , ADN/genética , Regulación del Desarrollo de la Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido/química , Inhibidores de Disociación de Guanina Nucleótido/genética , Modelos Moleculares , Neurogénesis/genética , Filogenia , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
10.
Mech Dev ; 114(1-2): 213-7, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12175514

RESUMEN

We have isolated a paired-type homeobox gene Dmbx1, previously known as Atx (Development 128 (2001) 4789), from chick and mouse. Sequence similarity reveals that this gene is highly related to the Otx genes. Expression of Dmbx1 commences during gastrulation, when transcripts are detected in a crescent around the anterior neural plate. As development progresses, Dmbx1 marks the prospective midbrain and pretectum. Dmbx1 shares its caudal border of expression with Otx2, while expression is sharply delimited rostrally by the synencephalic-parencephalic boundary, later becoming restricted to the posterior synencephalon. At later stages, Dmbx1 is expressed in dynamic domains of the hindbrain and spinal cord. Additional sites of expression comprise stomodeal ectoderm and foregut endoderm, presomitic mesoderm, and the nasal pit.


Asunto(s)
Encéfalo/embriología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Mesencéfalo/embriología , Secuencia de Aminoácidos , Animales , Pollos , Clonación Molecular , Ectodermo/metabolismo , Endodermo/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/biosíntesis , Factores de Transcripción Otx , Filogenia , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Distribución Tisular , Transactivadores/biosíntesis
11.
Mech Dev ; 114(1-2): 143-8, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12175501

RESUMEN

In a screen for Wnt genes executing the patterning function of the vertebrate surface ectoderm, we have isolated a novel chick Wnt gene, chick Wnt6. This gene encodes the first pan-epidermal Wnt signalling molecule. Further sites of expression are the boundary of the early neural plate and surface ectoderm, the roof of mesencephalon, pretectum and dorsal thalamus, the differentiating heart, and the otic vesicle. The precise sites of Wnt6 expression coincide with crucial changes in tissue architecture, namely epithelial remodelling and epithelial-mesenchymal transformation (EMT). Moreover, the expression of Wnt6 is closely associated with areas of Bmp signalling.


Asunto(s)
Epitelio/metabolismo , Expresión Génica , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Nervioso Central/embriología , Embrión de Pollo , Clonación Molecular , Oído Interno/embriología , Ectodermo/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Neuronas/metabolismo , Filogenia , Proteínas Proto-Oncogénicas/genética , ARN/metabolismo , Homología de Secuencia de Aminoácido
12.
Results Probl Cell Differ ; 56: 25-48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25344665

RESUMEN

Hypaxial muscle is the anatomical term commonly used when referring to all the ventrally located musculature in the body of vertebrates, including muscles of the body wall and the limbs. Yet these muscles had very humble beginnings when vertebrates evolved from their chordate ancestors, and complex anatomical changes and changes in underlying gene regulatory networks occurred. This review summarises the current knowledge and controversies regarding the development and evolution of hypaxial muscles.


Asunto(s)
Evolución Biológica , Extremidades/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/inervación , Vertebrados/crecimiento & desarrollo , Vertebrados/metabolismo
13.
Int Sch Res Notices ; 2014: 196594, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27350994

RESUMEN

The cat shark is increasingly used as a model for Chondrichthyes, an evolutionarily important sister group of the bony vertebrates that include teleosts and tetrapods. In the bony vertebrates, the first axon tracts form a highly conserved early axon scaffold. The corresponding structure has not been well characterised in cat shark and will prove a useful model for comparative studies. Using pan-neural markers, the early axon scaffold of the cat shark, Scyliorhinus canicula, was analysed. Like in other vertebrates, the medial longitudinal fascicle was the first axon tract to form from a small cluster of neurones in the ventral brain. Subsequently, additional neuronal clusters and axon tracts emerged which formed an array of longitudinal, transversal, and commissural axons tracts in the Scyliorhinus canicula embryonic brain. The first structures to appear after the medial longitudinal fascicle were the tract of the postoptic commissure, the dorsoventral diencephalic tract, and the descending tract of the mesencephalic nucleus of the trigeminal nerve. These results confirm that the early axon scaffold in the embryonic brain is highly conserved through vertebrate evolution.

14.
Oncol Rep ; 28(4): 1435-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22842701

RESUMEN

Malignant brain tumours are rare but are the most challenging types of cancers to treat. Despite conventional multimodality approaches available for their management, the outlook for most patients remains dismal due to the ability of the tumour cells to invade the normal brain. Attention has now focused on novel therapeutic interventions such as as the use of micronutrients. Both chokeberry extract (Aronia melanocarpa), which is rich in natural pigments such as anthocyanins and curcumin (diferuloylmethane) found in turmeric (Curcuma longa) have been reported to possess anticancer properties in other cancers. The aim of this study was to extend our previous research to evaluate the therapeutic potential of these two agents by testing their ability to induce apoptosis in an established glioblastoma cell line (U373). This was accomplished by treating the cells for 48 h with either chokeberry extract or curcumin, and using the Annexin-V assay. Gene profiles of 8 MMPs (2, 9, 14, 15, 16, 17, 24 and 25) and 4 TIMPs (1, 2, 3 and 4) were analysed for effects of mediators of invasion by quantitative real-time polymerase chain reaction (RT-PCR). The IC50 values determined for curcumin and chokeberry extract were 15 and 200 µg/ml, respectively. Our results also suggest that curcumin induces apoptosis but chokeberry extract is necrotic to this cell line. It is possible that chokeberry extract kills the cells by other non-apoptotic pathways. In addition, the RT-PCR results show downregulation of the gene expression of MMP-2, -14, -16 and -17 for both micronutrients. Taken together, the comparative data suggest that both curcumin and chokeberry extract may exhibit their anticancer potential by inducing apoptosis and inhibiting invasion by reducing MMP gene expression.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Curcumina/farmacología , Metaloproteinasas de la Matriz Secretadas/genética , Photinia/química , Polifenoles/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Concentración 50 Inhibidora , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 16 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasas de la Matriz Asociadas a la Membrana/genética , Extractos Vegetales/farmacología
15.
Int J Dev Biol ; 54(4): 743-53, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19757387

RESUMEN

Early axon tracts in the developing vertebrate brain are established along precise paths. Yet, little is known about axon guidance processes at early stages of rostral brain development. Using whole mount in situ hybridisation in combination with immunohistochemistry, we have analysed the expression patterns of Slits, Netrins, Semaphorins and the respective receptors during the formation of the early axon scaffold, particularly focusing on the pretectal-mesencephalic boundary. Many of these guidance molecules are expressed in close correlation with the growing tracts, and the nuclei of the corresponding neurons often express the respective receptors. The expression patterns of Slits and Netrins implicate them with the positioning of the longitudinal tracts along the dorsoventral axis, while Semaphorins could provide guidance at specific choice points. Our study provides a catalogue of gene expression for future studies on axon guidance mechanisms in the early brain.


Asunto(s)
Axones/fisiología , Mesencéfalo/embriología , Semaforinas/metabolismo , Animales , Axones/metabolismo , Movimiento Celular , Embrión de Pollo , Inmunohistoquímica , Mesencéfalo/química , Mesencéfalo/metabolismo , Neuronas/metabolismo , Semaforinas/análisis , Techo del Mesencéfalo/embriología , Techo del Mesencéfalo/metabolismo
16.
J Anat ; 211(2): 177-87, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17623036

RESUMEN

The first neurons in the vertebrate brain form a stereotypical array of longitudinal and transversal axon tracts, the early axon scaffold. This scaffold is thought to lay down the basic structure for the later, more complex neuronal pathways in the brain. The ventral longitudinal tract is pioneered by neurons located at the ventral midbrain-forebrain boundary, which form the medial longitudinal fascicle. Recent studies have shed some light on the molecular mechanisms that control the development of the medial longitudinal fascicle. Here, we show that patterning molecules, notably the ventralizing signalling molecule Shh, are involved in the formation of medial longitudinal fascicle neurons and in medial longitudinal fascicle axon guidance. Downstream of Shh, several homeobox genes are expressed in the tegmentum. We describe the expression patterns of Sax1, Emx2, Six3, Nkx2.2 and Pax6 in the mesencephalon and pretectum in detail. Furthermore, we review the evidence of their molecular interactions, and their involvement in neuronal fate specification. In particular, Sax1 plays a major role in fate determination of medial longitudinal fascicle neurons. Finally, we discuss the available data on axon guidance mechanisms for the medial longitudinal fascicle, which suggest that different guidance molecules such as class 3 Semaphorins, Slits and Netrins act to determine the caudal and ventral course of the medial longitudinal fascicle axons.


Asunto(s)
Mesencéfalo/embriología , Neuronas/metabolismo , Prosencéfalo/embriología , Animales , Embrión de Pollo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Mesencéfalo/citología , Mesencéfalo/metabolismo , Neuronas/citología , Prosencéfalo/citología , Prosencéfalo/metabolismo
17.
Development ; 132(8): 1785-93, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15772133

RESUMEN

The earliest step in establishing the complex neuronal networks in the vertebrate brain is the formation of a scaffold of axon tracts. How the formation of the early axon scaffold is controlled at the molecular level is unclear. Forming part of the scaffold, neurons located at the ventral midbrain-forebrain border (MFB) give rise to the medial longitudinal fascicle (mlf) and the posterior commissure (pc). We demonstrate that the homeobox genes Sax1, Six3, Emx2 and Pax6 are expressed in distinct domains in this area, suggesting that the specification of mlf and pc neurons might be controlled by the combinatorial activity of these transcription factors. We have tested this hypothesis by analysing the function of Sax1 in the embryonic chick brain. Gain-of-function experiments with Sax1 result in alterations to the early axon scaffold, most prominently an enlargement of the mlf at the expense of the pc. Ectopic expression of Sax1 also affects the expression of other ventral homeobox genes, particularly Six3 and Emx2. Our results indicate that the specification of neurons forming the early axon scaffold is governed by a homeobox code, thus resembling the mechanism of neuronal specification in the spinal cord.


Asunto(s)
Axones/fisiología , Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Axones/metabolismo , Proteínas de Caenorhabditis elegans , Diferenciación Celular/fisiología , Embrión de Pollo , Electroporación , Proteínas del Ojo/metabolismo , Técnicas Histológicas , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción , Proteína Homeobox SIX3
18.
Dev Biol ; 245(1): 187-99, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11969265

RESUMEN

Studies on the genetic basis of rostral-caudal specification, neural induction, and head development require knowledge of the relevant gene expression patterns. Gaps in our understanding of gene expression have led us to examine the detailed spatiotemporal expression patterns of 19 genes implicated in early development, to learn more about their potential role in specifying and patterning early developmental processes leading to head formation. Here, we report the expression patterns of these markers in blastula- and gastrula-stage chick embryos, using whole-mount in situ hybridisation. Nodal, Fgf8, Bmp7, Chordin, Lim1, Hnf3beta, Otx2, Goosecoid, Cerberus, Hex, Dickkopf1, and Crescent are all already expressed by the time the egg is laid. When the primitive streak has reached its full length, a later group of genes, including Ganf, Six3, Bmp2, Bmp4, Noggin, Follistatin, and Qin (BF1), begins to be expressed. We reassess current models of early rostral patterning based on the analysis of these dynamic spatiotemporal expression patterns.


Asunto(s)
Blastocisto/metabolismo , Gástrula/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Animales , Embrión de Pollo , Hibridación in Situ , Factores de Transcripción/genética
19.
Development ; 130(21): 5091-101, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12944427

RESUMEN

Previous studies of head induction in the chick have failed to demonstrate a clear role for the hypoblast and anterior definitive endoderm (ADE) in patterning the overlying ectoderm, whereas data from both mouse and rabbit suggest patterning roles for anterior visceral endoderm (AVE) and ADE. Based on similarity of gene expression patterns, fate and a dual role in 'protecting' the prospective forebrain from caudalising influences of the organiser, the chick hypoblast has been suggested to be the homologue of the mouse anterior visceral endoderm. In support of this, when transplanted to chick embryos, the rabbit AVE induces anterior markers in the chick epiblast. To reevaluate the role of the hypoblast/ADE (lower layer) in patterning the chick ectoderm, we used rostral blastoderm isolates (RBIs) as an assay, that is, rostral regions of blastoderms transected at levels rostral to the node. RBIs are, therefore, free from the influences of Hensen's node and ingressing axial mesoderm - tissues that are able to induce Ganf, the earliest specific marker of anterior neural plate. We demonstrate, using such RBIs (or RBIs dissected to remove the lower layer with or without tissue replacement), that the hypoblast/ADE (lower layer) is required and sufficient for patterning anterior positional identity in the overlying ectoderm, leading to expression of Ganf in neuroectoderm. Our results suggest that patterning of anterior positional identity and specification of neural identity are separable events operating to pattern the rostral end of the early chick embryo. Based on this new evidence we propose a revised model for establishing anteroposterior polarity, neural specification and head patterning in the early chick that is consonant with that occurring in other vertebrates.


Asunto(s)
Tipificación del Cuerpo , Embrión de Pollo/crecimiento & desarrollo , Embrión de Pollo/fisiología , Inducción Embrionaria , Endodermo/fisiología , Animales , Biomarcadores , Blastodermo/citología , Blastodermo/fisiología , Embrión de Pollo/anatomía & histología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB , Hibridación in Situ , Ratones , Morfogénesis/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prosencéfalo/embriología , Conejos , Factores de Transcripción SOXB1 , Trasplante de Tejidos , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA