Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(8): e2300101, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224805

RESUMEN

Monoclonal antibody infusions (mAb-i) are administered for the treatment of various diseases. They are often transported over long distances from the compounding site to the site of administration. However, transport studies are typically carried out with the original drug product but not with compounded mAb-i. To address this gap, the impact of mechanical stress on the formation of subvisible/nanoparticles in mAb-i was investigated by dynamic light scattering and flow imaging microscopy. Different mAb-i concentrations were subjected to vibrational orbital shaking and stored at 2-8°C up to 35 days. The screening revealed that pembrolizumab and bevacizumab infusions show the highest propensity for particle formation. Especially bevacizumab at low concentrations exhibited an increase in particle formation. Because of the unknown health risks associated with the long-term application of subvisible particles (SVPs)/nanoparticles in infusion bags, stability studies carried out in the frame of licensing application procedures should also focus on SVP formation in mAb-i. In general, pharmacists should minimize the time of storage and mechanical stress during transport, especially in the case of low-concentrated mAb-i. Moreover, if siliconized syringes are used, they should be washed once with saline solution to minimize particle entry.


Asunto(s)
Anticuerpos Monoclonales , Bevacizumab , Estrés Mecánico , Relación Estructura-Actividad , Preparaciones Farmacéuticas
2.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499165

RESUMEN

The PCTAIRE subfamily belongs to the CDK (cyclin-dependent kinase) family and represents an understudied class of kinases of the dark kinome. They exhibit a highly conserved binding pocket and are activated by cyclin Y binding. CDK16 is targeted to the plasma membrane after binding to N-myristoylated cyclin Y and is highly expressed in post-mitotic tissues, such as the brain and testis. Dysregulation is associated with several diseases, including breast, prostate, and cervical cancer. Here, we used the N-(1H-pyrazol-3-yl)pyrimidin-4-amine moiety from the promiscuous inhibitor 1 to target CDK16, by varying different residues. Further optimization steps led to 43d, which exhibited high cellular potency for CDK16 (EC50 = 33 nM) and the other members of the PCTAIRE and PFTAIRE family with 20-120 nM and 50-180 nM, respectively. A DSF screen against a representative panel of approximately 100 kinases exhibited a selective inhibition over the other kinases. In a viability assessment, 43d decreased the cell count in a dose-dependent manner. A FUCCI cell cycle assay revealed a G2/M phase cell cycle arrest at all tested concentrations for 43d, caused by inhibition of CDK16.


Asunto(s)
Quinasas Ciclina-Dependientes , Ciclinas , Masculino , Humanos , Ciclinas/metabolismo , Secuencia de Aminoácidos , Quinasas Ciclina-Dependientes/metabolismo , Unión Proteica
3.
Bioorg Med Chem ; 27(21): 115082, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548084

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) modulators have found wide application for the treatment of cancers, metabolic disorders and inflammatory diseases. Contrary to PPARγ agonists, PPARγ antagonists have been much less studied and although they have shown immunomodulatory effects, there is still no therapeutically useful PPARγ antagonist on the market. In contrast to non-competitive, irreversible inhibition caused by 2-chloro-5-nitrobenzanilide (GW9662), the recently described (E)-2-(5-((4-methoxy-2-(trifluoromethyl)quinolin-6-yl)methoxy)-2-((4-(trifluoromethyl)benzyl)oxy)-benzylidene)-hexanoic acid (MTTB, T-10017) is a promising prototype for a new class of PPARγ antagonists. It exhibits competitive antagonism against rosiglitazone mediated activation of PPARγ ligand binding domain (PPARγLBD) in a transactivation assay in HEK293T cells with an IC50 of 4.3 µM against 1 µM rosiglitazone. The aim of this study was to investigate the structure-activity relationships (SAR) of the MTTB scaffold focusing on improving its physicochemical properties. Through this optimization, 34 new derivatives were prepared and characterized. Two new potent compounds (T-10075 and T-10106) with much improved drug-like properties and promising pharmacokinetic profile were identified.


Asunto(s)
Cinamatos/farmacología , PPAR gamma/antagonistas & inhibidores , Quinolinas/farmacología , Animales , Cinamatos/síntesis química , Cinamatos/farmacocinética , Células HEK293 , Humanos , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/farmacocinética , Ratas , Rosiglitazona/farmacología , Relación Estructura-Actividad
4.
Plant Foods Hum Nutr ; 72(1): 48-53, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27900602

RESUMEN

Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 µg min-1 cm-2, respectively). This resulted in a higher Papp value of 2.11 × 10-6 cm/s for Sol-CUR compared to a Papp value of 0.56 × 10-6 cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.


Asunto(s)
Curcumina/farmacocinética , Composición de Medicamentos , Micelas , Administración Oral , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Epitelio/metabolismo , Humanos , Solubilidad
5.
Neurochem Res ; 41(1-2): 231-42, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26721513

RESUMEN

Developing new therapeutic strategies for Alzheimer's disease (AD) is a current challenge. Approved drugs merely act symptomatically and delay the progression of the disease for a relatively short period of time. Here, we investigated the effectiveness of MH84 in a cellular HEK293APPwt model of AD, characterized by elevated beta amyloid protein levels (Aß1-42) and mitochondrial dysfunction. MH84 is a derivate of pirinixic acid belonging to a novel class of γ-secretase modulators, which combines γ-secretase modulation with activation of peroxisome proliferator-activator receptor gamma (PPARγ). The mitochondria modifying Dimebon, the γ-secretase blocker DAPT, and the PPARγ agonist pioglitazone were used as controls. MH84 protects against nitrosative stress, increased mitochondrial respiration, citrate synthase (CS) activity and protein levels of PGC1α indicating enhanced mitochondrial content at nano-molar concentrations. Concurrently, MH84 decreased protein levels of APP, Aß1-42, and C-terminal fragments at micro-molar concentrations. Both Dimebon and DAPT reduced cellular Aß1-42 levels. Dimebon improved mitochondrial functions and DAPT decreased mitochondrial membrane potential. Pioglitazone had no effects on APP processing and mitochondrial function. Our data emphasizes MH84 as possible novel therapeutic agent with mitochondria-based mode of action.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/efectos de los fármacos , Mitocondrias/fisiología , Modelos Biológicos , PPAR gamma/agonistas , Pirimidinas/química , Pirimidinas/farmacología , Células HEK293 , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/fisiología
7.
Planta Med ; 82(6): 573-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27054914

RESUMEN

In consideration of the increasing popularity of frankincense and the widely published quality problems associated with botanical dietary supplements, a survey was conducted for the first time on the quality of frankincense containing botanical dietary supplements. Six US products representing 78 % of the units sold and 70 % of the market value, and 11 European products representing 30 % of the units sold and 40 % of the market value were tested for their boswellic acid composition profile, label compliance, and claimed health benefits. Special focus was also set on the statements made with regard to the frankincense applied.Only five products out of seventeen disclosed all relevant information for the Boswellia extract, mentioning the species, the part of plant used, and the boswellic acid content. Whereas all products but one claimed to use Boswellia serrata, three products did not mention the resin as the part applied and 10 products did not declare the boswellic acid content. Apart from the different boswellic acid composition determined with a sensitive LC/MS method, 41 % of the products did not comply with the label declaration. Hence, one product from Italy did not contain any of the six characteristic boswellic acids (KBA, AKBA, αBA, ßBA, AαBA, AßBA) at all and another US product contained only traces, suggesting the absence of frankincense or the use of Boswellia frereana instead of B. serrata. In another product, the ratios of the individual boswellic acids were different from B. serrata gum resin, indicating the use of another species such as Boswellia sacra or Boswellia carterii. Furthermore, two products revealed different boswellic acid contents from those declared on the label. Further, two products did not declare the use of manipulated Boswellia gum resin extract being enriched in acetyl-11-keto-boswellic acid content reaching up to 66 %. In addition, consumers could be misled by outdated literature or references to in vitro studies performed at dosages that can never be achieved in humans following oral administration.In summary, this survey reveals that in spite of increased regulations on botanical dietary supplements, the problem of mislabeling still exists and needs to be addressed by the manufacturers, so that consumers get greater confidence in the botanical dietary supplements they use.


Asunto(s)
Boswellia , Suplementos Dietéticos , Triterpenos/análisis , Boswellia/química , Europa (Continente) , Calidad de los Alimentos , Estructura Molecular , Resinas de Plantas/análisis , Encuestas y Cuestionarios , Triterpenos/química , Estados Unidos
8.
Bioorg Med Chem Lett ; 25(4): 841-6, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25575659

RESUMEN

We present the design, synthesis and biological evaluation of compounds containing a 2-(benzylidene)hexanoic acid scaffold as multi-target directed γ-secretase-modulators. Broad structural variations were undertaken to elucidate the structure-activity-relationships at the 5-position of the aromatic core. Compound 13 showed the most potent activity profile with IC50 values of 0.79µM (Aß42), 0.3µM (5-lipoxygenase) and an EC50 value of 4.64µM for PPARγ-activation. This derivative is the first compound exhibiting low micromolar to nanomolar activities for these three targets. Combining γ-secretase-modulation, PPARγ-agonism and inhibition of 5-lipoxygenase in one compound could be a novel disease-modifying multi-target-strategy for Alzheimer's disease to concurrently address the causative amyloid pathology and secondary pathologies like chronic brain inflammation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/efectos de los fármacos , Araquidonato 5-Lipooxigenasa/efectos de los fármacos , Caproatos/uso terapéutico , Inhibidores de la Lipooxigenasa/farmacología , PPAR gamma/agonistas , Caproatos/química , Caproatos/farmacología , Humanos , Inhibidores de la Lipooxigenasa/uso terapéutico , Relación Estructura-Actividad
9.
Bioorg Med Chem ; 23(3): 499-514, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25583100

RESUMEN

Nuclear receptors, especially the peroxisome proliferator activated receptors (PPARs) and the farnesoid X receptor (FXR) fulfill crucial roles in metabolic balance. Their activation offers valuable therapeutic potential which has high clinical relevance with the fibrates and glitazones as PPAR agonistic drugs. With growing knowledge about the various functions of nuclear receptors in many disorders, new selective or dual ligands of these pharmaceutical targets are however still required. Here we report the class of anthranilic acid derivatives as novel selective PPAR or dual FXR/PPAR ligands. We identified distinct molecular determinants that govern selectivity for each PPAR subtype or FXR as well as the amplitude of activation of the respective receptors. We thereby discovered several lead compounds for further optimization and developed a highly potent dual PPARα/FXR partial agonist that might have a beneficial synergistic effect on lipid homeostasis by simultaneous activation of two nuclear receptors involved in lipid metabolism.


Asunto(s)
Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Citoplasmáticos y Nucleares/agonistas , ortoaminobenzoatos/farmacología , Animales , Células COS , Chlorocebus aethiops , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/química , Receptores Citoplasmáticos y Nucleares/química , Relación Estructura-Actividad , ortoaminobenzoatos/química
10.
Bioorg Med Chem ; 23(13): 3490-8, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25934227

RESUMEN

The ligand activated transcription factor farnesoid X receptor (FXR) is a crucial regulator of several metabolic and inflammatory pathways and its activation by agonistic ligands seems a valuable therapeutic approach for many disorders. Most known non-steroidal FXR agonists however, have limitations that hinder their clinical development and novel FXR ligands are required. Evaluation of the co-crystal structures of the widely used FXR agonist GW4064 and related compounds in complex with the FXR ligand binding domain indicated that their disubstituted isoxazole moiety is especially relevant for FXR activation. By investigation of GW4064-fragments missing the aromatic tail, we discovered a highly potent and soluble partial FXR agonist (14, ST-1892) as well as a fluorescent FXR ligand (15) as potential pharmacological tool.


Asunto(s)
Isoxazoles/química , Receptores Citoplasmáticos y Nucleares/agonistas , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Expresión Génica , Células HeLa , Células Hep G2 , Humanos , Hidrólisis , Isoxazoles/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Plásmidos/química , Plásmidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Relación Estructura-Actividad , Transfección
11.
Bioorg Med Chem Lett ; 24(16): 4048-52, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25022880

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are attractive targets for the treatment of the metabolic syndrome. Especially a combination of PPARα and PPARγ agonistic activity seems worthwhile to be pursued. Herein we present the design and synthesis of a series of pirinixic acid derivatives as potent PPARα particularly dual PPARα/γ agonists with 2-((4-chloro-6-((4-(phenylamino)phenyl)amino)pyrimidin-2-yl)thio)octanoicacid having the highest potential. Our investigations based on molecular docking and structure-activity relationship (SAR) studies elucidated structural determinants affecting the potency at PPARα. A diphenylamine-scaffold seems to play a key role. Careful in silico analysis revealed an essential role for a hydrogen bond between the diphenylamine and a water cluster. We confirmed this hypothesis using a mutated PPARα LBD in our transactivation assay to disrupt the water cluster and to validate the proposed interaction.


Asunto(s)
Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , PPAR alfa/agonistas , Pirimidinas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Enlace de Hidrógeno , Estructura Molecular , PPAR alfa/genética , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
12.
Bioorg Med Chem Lett ; 24(16): 3757-63, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25037914

RESUMEN

The concept of dual PPARα/γ activation was originally proposed as a new approach for the treatment of the metabolic syndrome. However, recent results indicated that PPARα as well as PPARγ activation might also be beneficial in the treatment of inflammatory diseases and cancer. We have recently identified aminothiazole-featured pirinixic acids as dual 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors. Here we present the structure-activity relationship of these aminothiazole-featured pirinixic acids as dual PPARα/γ agonists and discuss their advantages with their potential as dual 5-LO/mPGES-1 inhibitors in inflammatory and cancer diseases. Various pirinixic acid derivatives had already been identified as dual PPARα/γ agonists. However, within this series of aminothiazole-featured pirinixic acids we were able to identify the most potent selective PPARγ agonistic pirinixic acid derivative (compound 13, (2-[(4-chloro-6-{[4-(naphthalen-2-yl)-1,3-thiazol-2-yl]amino}pyrimidin-2-yl)sulfanyl]octanoic acid)). Therefore, docking of 13 on PPARγ was performed to determine the potential binding mode.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , PPAR alfa/antagonistas & inhibidores , PPAR gamma/antagonistas & inhibidores , Pirimidinas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Modelos Moleculares , Estructura Molecular , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Prostaglandina-E Sintasas , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Tiazoles/química
13.
Bioorg Med Chem Lett ; 24(21): 5063-9, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25304894

RESUMEN

We synthesized a series of vanillin-derived compounds and analyzed them in HeLa cells for their effects on the proliferation of cancer cells. The molecules are derivatives of the lead compound SBE13, a potent inhibitor of the inactive conformation of human polo-like kinase 1 (Plk1). Some of the new designs were able to inhibit cancer cell proliferation to a similar extent as the lead structure. Two of the compounds ((({4-[(6-chloropyridin-3-yl)methoxy]-3-methoxyphenyl}methyl)(pyridin-4-ylmethyl)amine) and (({4-[(4-chlorophenyl)methoxy]-3-methoxyphenyl}methyl)(pyridin-4-ylmethyl)amine)) were much stronger in their capacity to reduce HeLa cell proliferation and turned out to potently induce apoptosis and reduce Plk1 kinase activity in vitro.


Asunto(s)
Benzaldehídos/química , Benzaldehídos/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzaldehídos/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HeLa , Humanos , Unión Proteica , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Relación Estructura-Actividad , Quinasa Tipo Polo 1
14.
Bioorg Med Chem ; 22(8): 2447-60, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24685112

RESUMEN

Nuclear farnesoid X receptor (FXR) has important physiological roles in various metabolic pathways including bile acid, cholesterol and glucose homeostasis. The clinical use of known synthetic non-steroidal FXR ligands is restricted due to toxicity or poor bioavailability. Here we report the development, synthesis, in vitro activity and structure-activity relationship (SAR) of anthranilic acid derivatives as novel FXR ligands. Starting from a virtual screening hit we optimized the scaffold to a series of potent partial FXR agonists with appealing drug-like properties. The most potent derivative exhibited an EC50 value of 1.5±0.2 µM and 37±2% maximum relative FXR activation. We investigated its SAR regarding polar interactions with the receptor by generating derivatives and computational docking.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/metabolismo , ortoaminobenzoatos/metabolismo , Sitios de Unión , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/agonistas , Relación Estructura-Actividad , ortoaminobenzoatos/síntesis química , ortoaminobenzoatos/química
15.
J Med Chem ; 67(1): 674-690, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38126712

RESUMEN

MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.


Asunto(s)
Apoptosis , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Mamíferos/metabolismo
16.
J Med Chem ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917049

RESUMEN

G protein-coupled receptor G2A was postulated to be a promising target for the development of new therapeutics in neuropathic pain, acute myeloid leukemia, and inflammation. However, there is still a lack of potent, selective, and drug-like G2A agonists to be used as a chemical tool or as the starting matter for the development of drugs. In this work, we present the discovery and structure-activity relationship elucidation of a new potent and selective G2A agonist scaffold. Systematic optimization resulted in (3-(pyridin-3-ylmethoxy)benzoyl)-d-phenylalanine (T-10418) exhibiting higher potency than the reference and natural ligand 9-HODE and high selectivity among G protein-coupled receptors. With its favorable activity, a clean selectivity profile, excellent solubility, and high metabolic stability, T-10418 qualifies as a pharmacological tool to investigate the effects of G2A activation.

17.
Bioorg Med Chem ; 21(24): 7874-83, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24183739

RESUMEN

The microsomal prostaglandin E2 synthase 1 (mPGES-1) became a desirable target in recent years for the research of new anti-inflammatory drugs. Even though many potent inhibitors of human mPGES-1, tested in vitro assay systems, have been synthesized, they all failed in preclinical trials in rodent models of inflammation, due to the lack of activity on rodent enzyme. Within this work we want to present a new class of mPGES-1 inhibitors derived from a benzenesulfonamide scaffold with inhibitory potency on human and murine mPGES-1. Starting point with an IC50 of 13.8 µM on human mPGES-1 was compound 1 (4-{benzyl[(4-methoxyphenyl)methyl]sulfamoyl}benzoic acid; FR4), which was discovered by a virtual screening approach. Optimization during a structure-activity relationship (SAR) process leads to compound 28 (4-[(cyclohexylmethyl)[(4-phenylphenyl)methyl]sulfamoyl]benzoic acid) with an improved IC50 of 0.8 µM on human mPGES-1. For the most promising compounds a broad pharmacological characterization has been carried out to estimate their anti-inflammatory potential.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Ligandos , Ratones , Estructura Molecular , Células 3T3 NIH , Prostaglandina-E Sintasas , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Bencenosulfonamidas
18.
J Med Chem ; 66(1): 333-344, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36533416

RESUMEN

The three retinoid X receptor subtypes (RXRα, RXRß, RXRγ) exhibit critical regulatory roles in cell proliferation and differentiation, metabolism, and inflammation. Due to their importance in nuclear receptor signaling, RXRs are widely distributed and pan-RXR agonists cause adverse effects, but the three highly conserved RXR ligand binding sites render the development of subtype-selective ligands a major challenge. We have fused elements of known RXR ligands to obtain a new RXR agonist chemotype on which minor structural modifications enabled the development of tools with single-subtype preference for RXRα, RXRß, and RXRγ. Molecular modeling indicated different binding conformations and interaction patterns with the RXR LBDs as factors of preferential binding. In a phenotypic adipocyte differentiation experiment, only the RXRα preferential tool enhanced the adipogenic effects of pioglitazone, suggesting this subtype as particularly relevant in adipogenesis and highlighting the set of subtype-preferential RXR agonist tools as suitable for functional cellular studies.


Asunto(s)
Regulación de la Expresión Génica , Receptores Citoplasmáticos y Nucleares , Receptores X Retinoide , Ligandos , Diferenciación Celular
19.
J Med Chem ; 66(24): 16762-16771, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38064686

RESUMEN

The retinoid X receptors (RXRs) are ligand-activated transcription factors involved in, for example, differentiation and apoptosis regulation. Currently used reference RXR agonists suffer from insufficient specificity and poor physicochemical properties, and improved tools are needed to capture the unexplored therapeutic potential of RXR. Endogenous vitamin A-derived RXR ligands and the natural product RXR agonist valerenic acid comprise acrylic acid residues with varying substitution patterns to engage the critical ionic contact with the binding site arginine. To mimic and exploit this natural ligand motif, we probed its structural fusion with synthetic RXR modulator scaffolds, which had profound effects on agonist activity and remarkably boosted potency of an oxaprozin-derived RXR agonist chemotype. Bioisosteric replacement of the acrylic acid to overcome its pan-assay interference compounds (PAINS) character enabled the development of a highly optimized RXR agonist chemical probe.


Asunto(s)
Acrilatos , Receptores de Ácido Retinoico , Receptores de Ácido Retinoico/agonistas , Ligandos , Receptores X Retinoide/metabolismo
20.
Bioorg Med Chem Lett ; 22(5): 1969-75, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22326163

RESUMEN

A novel class of 5-lipoxygenase (5-LO) inhibitors characterized by a central imidazo[1,2-a]pyridine scaffold, a cyclohexyl moiety and an aromatic system, is presented. This scaffold was identified in a virtual screening study and exhibits promising inhibitory potential on the 5-LO. Here, we investigate the structure-activity relationships of this compound class. With N-cyclohexyl-6-methyl-2-(4-morpholinophenyl)imidazo[1,2-a]pyridine-3-amine (14), we identified a potent 5-LO inhibitor (IC(50)=0.16µM (intact cells) and 0.1µM (cell-free)), which may possess potential as an effective lead compound intervening with inflammatory diseases and certain types of cancer.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Piridinas/química , Piridinas/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/enzimología , Inhibidores de la Lipooxigenasa/síntesis química , Piridinas/síntesis química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA