Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(2): 583-597.e23, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220456

RESUMEN

When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation. Topoisomerases, including gyrase and topoisomerase IV in bacteria, are required to relax positive supercoils ahead of DNA polymerase but may not be sufficient for replication. Here, we find that GapR, a chromosome structuring protein in Caulobacter crescentus, is required to complete DNA replication. GapR associates in vivo with positively supercoiled chromosomal DNA, and our biochemical and structural studies demonstrate that GapR forms a dimer-of-dimers that fully encircles overtwisted DNA. Further, we show that GapR stimulates gyrase and topo IV to relax positive supercoils, thereby enabling DNA replication. Analogous chromosome structuring proteins that locate to the overtwisted DNA in front of replication forks may be present in other organisms, similarly helping to recruit and stimulate topoisomerases during DNA replication.


Asunto(s)
Cromosomas Bacterianos/fisiología , ADN Bacteriano/química , ADN Superhelicoidal/metabolismo , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Estructuras Cromosómicas/fisiología , Cromosomas Bacterianos/metabolismo , ADN/fisiología , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , ADN Bacteriano/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Cinética
2.
Genes Dev ; 36(9-10): 618-633, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618312

RESUMEN

DNA damage repair systems are critical for genomic integrity. However, they must be coordinated with DNA replication and cell division to ensure accurate genomic transmission. In most bacteria, this coordination is mediated by the SOS response through LexA, which triggers a halt in cell division until repair is completed. Recently, an SOS-independent damage response system was revealed in Caulobacter crescentus. This pathway is controlled by the transcription activator, DriD, but how DriD senses and signals DNA damage is unknown. To address this question, we performed biochemical, cellular, and structural studies. We show that DriD binds a specific promoter DNA site via its N-terminal HTH domain to activate transcription of genes, including the cell division inhibitor didA A structure of the C-terminal portion of DriD revealed a WYL motif domain linked to a WCX dimerization domain. Strikingly, we found that DriD binds ssDNA between the WYL and WCX domains. Comparison of apo and ssDNA-bound DriD structures reveals that ssDNA binding orders and orients the DriD domains, indicating a mechanism for ssDNA-mediated operator DNA binding activation. Biochemical and in vivo studies support the structural model. Our data thus reveal the molecular mechanism underpinning an SOS-independent DNA damage repair pathway.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Daño del ADN , ADN de Cadena Simple/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Cell ; 158(5): 1136-1147, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171413

RESUMEN

The cyclic dinucleotide c-di-GMP is a signaling molecule with diverse functions in cellular physiology. Here, we report that c-di-GMP can assemble into a tetramer that mediates the effective dimerization of a transcription factor, BldD, which controls the progression of multicellular differentiation in sporulating actinomycete bacteria. BldD represses expression of sporulation genes during vegetative growth in a manner that depends on c-di-GMP-mediated dimerization. Structural and biochemical analyses show that tetrameric c-di-GMP links two subunits of BldD through their C-terminal domains, which are otherwise separated by ~10 Å and thus cannot effect dimerization directly. Binding of the c-di-GMP tetramer by BldD is selective and requires a bipartite RXD-X8-RXXD signature. The findings indicate a unique mechanism of protein dimerization and the ability of nucleotide signaling molecules to assume alternative oligomeric states to effect different functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , GMP Cíclico/metabolismo , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Esporas Bacterianas/metabolismo , Streptomyces/citología , Factores de Transcripción/química
4.
Mol Cell ; 81(1): 139-152.e10, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33217319

RESUMEN

The bacterium Francisella tularensis (Ft) is one of the most infectious agents known. Ft virulence is controlled by a unique combination of transcription regulators: the MglA-SspA heterodimer, PigR, and the stress signal, ppGpp. MglA-SspA assembles with the σ70-associated RNAP holoenzyme (RNAPσ70), forming a virulence-specialized polymerase. These factors activate Francisella pathogenicity island (FPI) gene expression, which is required for virulence, but the mechanism is unknown. Here we report FtRNAPσ70-promoter-DNA, FtRNAPσ70-(MglA-SspA)-promoter DNA, and FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-promoter DNA cryo-EM structures. Structural and genetic analyses show MglA-SspA facilitates σ70 binding to DNA to regulate virulence and virulence-enhancing genes. Our Escherichia coli RNAPσ70-homodimeric EcSspA structure suggests this is a general SspA-transcription regulation mechanism. Strikingly, our FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-DNA structure reveals ppGpp binding to MglA-SspA tethers PigR to promoters. PigR in turn recruits FtRNAP αCTDs to DNA UP elements. Thus, these studies unveil a unique mechanism for Ft pathogenesis involving a virulence-specialized RNAP that employs two (MglA-SspA)-based strategies to activate virulence genes.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Francisella tularensis , Regiones Promotoras Genéticas , Factor sigma , Factores de Virulencia , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Francisella tularensis/genética , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidad , Factor sigma/genética , Factor sigma/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Mol Cell ; 77(3): 586-599.e6, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31810759

RESUMEN

Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.


Asunto(s)
GMP Cíclico/análogos & derivados , Factor sigma/metabolismo , Streptomyces/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , GMP Cíclico/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Dominios Proteicos , ARN Bacteriano/metabolismo , Esporas Bacterianas/metabolismo , Streptomyces/genética
6.
Nature ; 587(7833): 291-296, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087930

RESUMEN

Transcription factors recognize specific genomic sequences to regulate complex gene-expression programs. Although it is well-established that transcription factors bind to specific DNA sequences using a combination of base readout and shape recognition, some fundamental aspects of protein-DNA binding remain poorly understood1,2. Many DNA-binding proteins induce changes in the structure of the DNA outside the intrinsic B-DNA envelope. However, how the energetic cost that is associated with distorting the DNA contributes to recognition has proven difficult to study, because the distorted DNA exists in low abundance in the unbound ensemble3-9. Here we use a high-throughput assay that we term SaMBA (saturation mismatch-binding assay) to investigate the role of DNA conformational penalties in transcription factor-DNA recognition. In SaMBA, mismatched base pairs are introduced to pre-induce structural distortions in the DNA that are much larger than those induced by changes in the Watson-Crick sequence. Notably, approximately 10% of mismatches increased transcription factor binding, and for each of the 22 transcription factors that were examined, at least one mismatch was found that increased the binding affinity. Mismatches also converted non-specific sites into high-affinity sites, and high-affinity sites into 'super sites' that exhibit stronger affinity than any known canonical binding site. Determination of high-resolution X-ray structures, combined with nuclear magnetic resonance measurements and structural analyses, showed that many of the DNA mismatches that increase binding induce distortions that are similar to those induced by protein binding-thus prepaying some of the energetic cost incurred from deforming the DNA. Our work indicates that conformational penalties are a major determinant of protein-DNA recognition, and reveals mechanisms by which mismatches can recruit transcription factors and thus modulate replication and repair activities in the cell10,11.


Asunto(s)
Proteínas de Unión al ADN/química , Conformación Molecular , Ácidos Nucleicos Heterodúplex/química , Proteínas de Arabidopsis/química , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Termodinámica , Factores de Transcripción/química
7.
Nucleic Acids Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832628

RESUMEN

Nucleoid-associated proteins (NAPs) play central roles in bacterial chromosome organization and DNA processes. The Escherichia coli YejK protein is a highly abundant, yet poorly understood NAP. YejK proteins are conserved among Gram-negative bacteria but show no homology to any previously characterized DNA-binding protein. Hence, how YejK binds DNA is unknown. To gain insight into YejK structure and its DNA binding mechanism we performed biochemical and structural analyses on the E. coli YejK protein. Biochemical assays demonstrate that, unlike many NAPs, YejK does not show a preference for AT-rich DNA and binds non-sequence specifically. A crystal structure revealed YejK adopts a novel fold comprised of two domains. Strikingly, each of the domains harbors an extended arm that mediates dimerization, creating an asymmetric clamp with a 30 Å diameter pore. The lining of the pore is electropositive and mutagenesis combined with fluorescence polarization assays support DNA binding within the pore. Finally, our biochemical analyses on truncated YejK proteins suggest a mechanism for YejK clamp loading. Thus, these data reveal YejK contains a newly described DNA-binding motif that functions as a novel clamp.

8.
Nucleic Acids Res ; 52(3): 1435-1449, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142455

RESUMEN

Transcription regulators play central roles in orchestrating responses to changing environmental conditions. Recently the Caulobacter crescentus transcription activator DriD, which belongs to the newly defined WYL-domain family, was shown to regulate DNA damage responses independent of the canonical SOS pathway. However, the molecular mechanisms by which DriD and other WYL-regulators sense environmental signals and recognize DNA are not well understood. We showed DriD DNA-binding is triggered by its interaction with ssDNA, which is produced during DNA damage. Here we describe the structure of the full-length C. crescentus DriD bound to both target DNA and effector ssDNA. DriD consists of an N-terminal winged-HTH (wHTH) domain, linker region, three-helix bundle, WYL-domain and C-terminal WCX-dimer domain. Strikingly, DriD binds DNA using a novel, asymmetric DNA-binding mechanism that results from different conformations adopted by the linker. Although the linker does not touch DNA, our data show that contacts it makes with the wHTH are key for specific DNA binding. The structure indicates how ssDNA-effector binding to the WYL-domain impacts wHTH DNA binding. In conclusion, we present the first structure of a WYL-activator bound to both effector and target DNA. The structure unveils a unique, asymmetric DNA binding mode that is likely conserved among WYL-activators.


Asunto(s)
Proteínas Bacterianas , Caulobacter , Proteínas de Unión al ADN , Factores de Transcripción , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Caulobacter/metabolismo , ADN/química , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Genes Dev ; 31(5): 481-492, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28373206

RESUMEN

Walker-box partition systems are ubiquitous in nature and mediate the segregation of bacterial and archaeal DNA. Well-studied plasmid Walker-box partition modules require ParA, centromere-DNA, and a centromere-binding protein, ParB. In these systems, ParA-ATP binds nucleoid DNA and uses it as a substratum to deliver ParB-attached cargo DNA, and ParB drives ParA dynamics, allowing ParA progression along the nucleoid. How ParA-ATP binds nonspecific DNA and is regulated by ParB is unclear. Also under debate is whether ParA polymerizes on DNA to mediate segregation. Here we describe structures of key ParA segregation complexes. The ParA-ß,γ-imidoadenosine 5'-triphosphate (AMPPNP)-DNA structure revealed no polymers. Instead, ParA-AMPPNP dimerization creates a multifaceted DNA-binding surface, allowing it to preferentially bind high-density DNA regions (HDRs). DNA-bound ParA-AMPPNP adopts a dimer conformation distinct from the ATP sandwich dimer, optimized for DNA association. Our ParA-AMPPNP-ParB structure reveals that ParB binds at the ParA dimer interface, stabilizing the ATPase-competent ATP sandwich dimer, ultimately driving ParA DNA dissociation. Thus, the data indicate how harnessing a conformationally adaptive dimer can drive large-scale cargo movement without the requirement for polymers and suggest a segregation mechanism by which ParA-ATP dimers equilibrate to HDRs shown to be localized near cell poles of dividing chromosomes, thus mediating equipartition of attached ParB-DNA substrates.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Segregación Cromosómica , ADN de Archaea/química , ADN Bacteriano/química , Modelos Moleculares , Adenosina Trifosfatasas/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Cristalización , ADN de Archaea/metabolismo , ADN Bacteriano/metabolismo , Activación Enzimática , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
10.
Genes Dev ; 31(15): 1549-1560, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864445

RESUMEN

Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacteria known. Because of its extreme pathogenicity, F. tularensis is classified as a category A bioweapon by the US government. F. tularensis virulence stems from genes encoded on the Francisella pathogenicity island (FPI). An unusual set of Francisella regulators-the heteromeric macrophage growth locus protein A (MglA)-stringent starvation protein A (SspA) complex and the DNA-binding protein pathogenicity island gene regulator (PigR)-activates FPI transcription and thus is essential for virulence. Intriguingly, the second messenger, guanosine-tetraphosphate (ppGpp), which is produced during infection, is also involved in coordinating Francisella virulence; however, its role has been unclear. Here we identify MglA-SspA as a novel ppGpp-binding complex and describe structures of apo- and ppGpp-bound MglA-SspA. We demonstrate that MglA-SspA, which binds RNA polymerase (RNAP), also interacts with the C-terminal domain of PigR, thus anchoring the (MglA-SspA)-RNAP complex to the FPI promoter. Furthermore, we show that MglA-SspA must be bound to ppGpp to mediate high-affinity interactions with PigR. Thus, these studies unveil a novel pathway different from those described previously for regulation of transcription by ppGpp. The data also indicate that F. tularensis pathogenesis is controlled by a highly interconnected molecular circuitry in which the virulence machinery directly senses infection via a small molecule stress signal.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Francisella tularensis/patogenicidad , Islas Genómicas/genética , Guanosina Tetrafosfato/metabolismo , Tularemia/microbiología , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Bioterrorismo/prevención & control , Células Cultivadas , Cristalografía , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/genética , Humanos , Macrófagos/metabolismo , Conformación Proteica , Transcripción Genética , Virulencia/genética
11.
Nucleic Acids Res ; 50(2): 847-866, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34967415

RESUMEN

The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica
12.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34290147

RESUMEN

Filamentous actinobacteria of the genus Streptomyces have a complex lifecycle involving the differentiation of reproductive aerial hyphae into spores. We recently showed c-di-GMP controls this transition by arming a unique anti-σ, RsiG, to bind the sporulation-specific σ, WhiG. The Streptomyces venezuelae RsiG-(c-di-GMP)2-WhiG structure revealed that a monomeric RsiG binds c-di-GMP via two E(X)3S(X)2R(X)3Q(X)3D repeat motifs, one on each helix of an antiparallel coiled-coil. Here we show that RsiG homologs are found scattered throughout the Actinobacteria. Strikingly, RsiGs from unicellular bacteria descending from the most basal branch of the Actinobacteria are small proteins containing only one c-di-GMP binding motif, yet still bind their WhiG partners. Our structure of a Rubrobacter radiotolerans (RsiG)2-(c-di-GMP)2-WhiG complex revealed that these single-motif RsiGs are able to form an antiparallel coiled-coil through homodimerization, thereby allowing them to bind c-di-GMP similar to the monomeric twin-motif RsiGs. Further data show that in the unicellular actinobacterium R. radiotolerans, the (RsiG)2-(c-di-GMP)2-WhiG regulatory switch controls type IV pilus expression. Phylogenetic analysis indicates the single-motif RsiGs likely represent the ancestral state and an internal gene-duplication event gave rise to the twin-motif RsiGs inherited elsewhere in the Actinobacteria. Thus, these studies show how the anti-σ RsiG has evolved through an intragenic duplication event from a small protein carrying a single c-di-GMP binding motif, which functions as a homodimer, to a larger protein carrying two c-di-GMP binding motifs, which functions as a monomer. Consistent with this, our structures reveal potential selective advantages of the monomeric twin-motif anti-σ factors.


Asunto(s)
Actinobacteria/metabolismo , Factor sigma/metabolismo , Streptomyces/metabolismo , Actinobacteria/genética , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , Fimbrias Bacterianas , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Factor sigma/genética , Streptomyces/genética
13.
Mol Microbiol ; 117(2): 252-260, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34894005

RESUMEN

Bacteria must rapidly detect and respond to stressful environmental conditions. Guanosine tetraphosphate (ppGpp) is a universal stress signal that, in most bacteria, drives the reprograming of transcription at a global level. However, recent studies have revealed that the molecular mechanisms utilized by ppGpp to rewire bacterial transcriptomes are unexpectedly diverse. In Proteobacteria, ppGpp regulates the expression of hundreds of genes by directly binding to two sites on RNA polymerase (RNAP), one in combination with the transcription factor, DksA. Conversely, ppGpp indirectly regulates transcription in Firmicutes by controlling GTP levels. In this case, ppGpp inhibits enzymes that salvage and synthesize GTP, which indirectly represses transcription from rRNA and other promoters that use GTP for initiation. More recently, two different mechanisms of transcription regulation involving the direct binding of transcription factors by ppGpp have been described. First, in Francisella tularensis, ppGpp was shown to modulate the formation of a tripartite transcription factor complex that binds RNAP and activates virulence genes. Second, in Firmicutes, ppGpp allosterically regulates the transcription repressor, PurR, which controls purine biosynthesis genes. The diversity in bacterial ppGpp signaling revealed in these studies suggests the likelihood that additional paradigms in ppGpp-mediated transcription regulation await discovery.


Asunto(s)
Francisella tularensis , Guanosina Tetrafosfato , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Francisella tularensis/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Guanosina Tetrafosfato/metabolismo , Transcripción Genética , Virulencia/genética
14.
Nucleic Acids Res ; 49(21): 12540-12555, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792150

RESUMEN

Watson-Crick base pairs (bps) are the fundamental unit of genetic information and the building blocks of the DNA double helix. However, A-T and G-C can also form alternative 'Hoogsteen' bps, expanding the functional complexity of DNA. We developed 'Hoog-finder', which uses structural fingerprints to rapidly screen Hoogsteen bps, which may have been mismodeled as Watson-Crick in crystal structures of protein-DNA complexes. We uncovered 17 Hoogsteen bps, 7 of which were in complex with 6 proteins never before shown to bind Hoogsteen bps. The Hoogsteen bps occur near mismatches, nicks and lesions and some appear to participate in recognition and damage repair. Our results suggest a potentially broad role for Hoogsteen bps in stressed regions of the genome and call for a community-wide effort to identify these bps in current and future crystal structures of DNA and its complexes.


Asunto(s)
Emparejamiento Base , Proteínas de Unión al ADN/química , ADN/química , Conformación de Ácido Nucleico , Dominios Proteicos , Secuencia de Bases , Sitios de Unión/genética , Biología Computacional/métodos , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Bases de Datos Genéticas , Enlace de Hidrógeno , Modelos Moleculares , Mutación , Unión Proteica , Termodinámica
15.
Nucleic Acids Res ; 49(7): 4155-4170, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784401

RESUMEN

Mutations within the mtrR gene are commonly found amongst multidrug resistant clinical isolates of Neisseria gonorrhoeae, which has been labelled a superbug by the Centers for Disease Control and Prevention. These mutations appear to contribute to antibiotic resistance by interfering with the ability of MtrR to bind to and repress expression of its target genes, which include the mtrCDE multidrug efflux transporter genes and the rpoH oxidative stress response sigma factor gene. However, the DNA-recognition mechanism of MtrR and the consensus sequence within these operators to which MtrR binds has remained unknown. In this work, we report the crystal structures of MtrR bound to the mtrCDE and rpoH operators, which reveal a conserved, but degenerate, DNA consensus binding site 5'-MCRTRCRN4YGYAYGK-3'. We complement our structural data with a comprehensive mutational analysis of key MtrR-DNA contacts to reveal their importance for MtrR-DNA binding both in vitro and in vivo. Furthermore, we model and generate common clinical mutations of MtrR to provide plausible biochemical explanations for the contribution of these mutations to multidrug resistance in N. gonorrhoeae. Collectively, our findings unveil key biological mechanisms underlying the global stress responses of N. gonorrhoeae.


Asunto(s)
Proteínas Bacterianas , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Neisseria gonorrhoeae , Proteínas Represoras , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Mutación , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
16.
Genes Dev ; 29(4): 451-64, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25691471

RESUMEN

All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer "templates" active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Homeostasis/genética , Modelos Moleculares , Nitrógeno/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalización , ADN/química , ADN/metabolismo , Dimerización , Activación Enzimática/genética , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Alineación de Secuencia
17.
RNA ; 26(1): 69-82, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704716

RESUMEN

Most mitochondrial mRNAs are transcribed as polycistronic precursors that are cleaved by endonucleases to produce mature mRNA transcripts. However, recent studies have shown that mitochondrial transcripts in the kinetoplastid protozoan, Trypanosoma brucei, are transcribed individually. Also unlike most mitochondrial mRNAs, the 5' end of these transcripts harbor a triphosphate that is hydrolyzed. This modification is carried out by a putative Nudix hydrolase called MERS1. The Nudix motif in MERS1 is degenerate, lacking a conserved glutamic acid, thus it is unclear how it may bind its substrates and whether it contains a Nudix fold. To obtain insight into this unusual hydrolase, we determined structures of apo, GTP-bound and RNA-bound T. brucei MERS1 to 2.30 Å, 2.45 Å, and 2.60 Å, respectively. The MERS1 structure has a unique fold that indeed contains a Nudix motif. The nucleotide bound structures combined with binding studies reveal that MERS1 shows preference for RNA sequences with a central guanine repeat which it binds in a single-stranded conformation. The apo MERS1 structure indicates that a significant portion of its nucleotide binding site folds upon substrate binding. Finally, a potential interaction region for a binding partner, MERS2, that activates MERS1 was identified. The MERS2-like peptide inserts a glutamate near the missing Nudix acidic residue in the RNA binding pocket, suggesting how the enzyme may be activated. Thus, the combined studies reveal insight into the structure and enzyme properties of MERS1 and its substrate-binding activities.


Asunto(s)
ARN Mensajero/química , ARN Mitocondrial/química , Trypanosoma brucei brucei/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Mensajero/genética , ARN Mitocondrial/genética , ARN Protozoario/química , ARN Protozoario/genética , Alineación de Secuencia , Trypanosoma brucei brucei/genética
18.
Nature ; 524(7563): 59-64, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26222023

RESUMEN

Multidrug tolerance is largely responsible for chronic infections and caused by a small population of dormant cells called persisters. Selection for survival in the presence of antibiotics produced the first genetic link to multidrug tolerance: a mutant in the Escherichia coli hipA locus. HipA encodes a serine-protein kinase, the multidrug tolerance activity of which is neutralized by binding to the transcriptional regulator HipB and hipBA promoter. The physiological role of HipA in multidrug tolerance, however, has been unclear. Here we show that wild-type HipA contributes to persister formation and that high-persister hipA mutants cause multidrug tolerance in urinary tract infections. Perplexingly, high-persister mutations map to the N-subdomain-1 of HipA far from its active site. Structures of higher-order HipA-HipB-promoter complexes reveal HipA forms dimers in these assemblies via N-subdomain-1 interactions that occlude their active sites. High-persistence mutations, therefore, diminish HipA-HipA dimerization, thereby unleashing HipA to effect multidrug tolerance. Thus, our studies reveal the mechanistic basis of heritable, clinically relevant antibiotic tolerance.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Regiones Promotoras Genéticas/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Tolerancia a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Modelos Moleculares , Mutación/genética , Operón/genética , Fenotipo , Multimerización de Proteína , Estructura Terciaria de Proteína/genética , Transcripción Genética/genética , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
19.
Nucleic Acids Res ; 47(11): 5950-5962, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31106331

RESUMEN

Carboxysomes, protein-coated organelles in cyanobacteria, are important in global carbon fixation. However, these organelles are present at low copy in each cell and hence must be segregated to ensure transmission from one generation to the next. Recent studies revealed that a DNA partition-like ParA-ParB system mediates carboxysome maintenance, called McdA-McdB. Here, we describe the first McdA and McdB homolog structures. McdA is similar to partition ParA Walker-box proteins, but lacks the P-loop signature lysine involved in ATP binding. Strikingly, a McdA-ATP structure shows that a lysine distant from the P-loop and conserved in McdA homologs, enables ATP-dependent nucleotide sandwich dimer formation. Similar to partition ParA proteins this ATP-bound form binds nonspecific-DNA. McdB, which we show directly binds McdA, harbors a unique fold and appears to form higher-order oligomers like partition ParB proteins. Thus, our data reveal a new signature motif that enables McdA dimer formation and indicates that, similar to DNA segregation, carboxysome maintenance systems employ Walker-box proteins as DNA-binding motors while McdB proteins form higher order oligomers, which could function as adaptors to link carboxysomes and provide for stable transport by the McdA proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Cyanothece/metabolismo , Orgánulos/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Ciclo del Carbono , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Escherichia coli , Glutaral/química , Unión Proteica , Pliegue de Proteína
20.
Nucleic Acids Res ; 47(4): 2130-2142, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30544166

RESUMEN

Kinetoplastid RNA (kRNA) editing takes place in the mitochondria of kinetoplastid protists and creates translatable mRNAs by uridine insertion/deletion. Extensively edited (pan-edited) transcripts contain quadruplex forming guanine stretches, which must be remodeled to promote uridine insertion/deletion. Here we show that the RRM domain of the essential kRNA-editing factor TbRGG2 binds poly(G) and poly(U) RNA and can unfold both. A region C-terminal to the RRM mediates TbRGG2 dimerization, enhancing RNA binding. A RRM-U4 RNA structure reveals a unique RNA-binding mechanism in which the two RRMs of the dimer employ aromatic residues outside the canonical RRM RNA-binding motifs to encase and wrench open the RNA, while backbone atoms specify the uridine bases. Notably, poly(G) RNA is bound via a different binding surface. Thus, these data indicate that TbRGG2 RRM can bind and remodel several RNA substrates suggesting how it might play multiple roles in the kRNA editing process.


Asunto(s)
Mitocondrias/genética , ARN Protozoario/química , ARN/química , Uridina/química , G-Cuádruplex , Kinetoplastida/química , Kinetoplastida/genética , Mitocondrias/química , ARN/genética , Edición de ARN , Motivo de Reconocimiento de ARN/genética , ARN Protozoario/genética , Trypanosoma brucei brucei/genética , Uridina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA