Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 34(1): 555-570, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914652

RESUMEN

Muscle wasting, or muscle atrophy, can occur with age, injury, and disease; it affects the quality of life and complicates treatment. Insulin-like growth factor 1 (IGF1) is a key positive regulator of muscle mass. The IGF1/Igf1 gene encodes multiple protein isoforms that differ in tissue expression, potency, and function, particularly in cellular proliferation and differentiation, as well as in systemic versus localized signaling. Genome engineering is a novel strategy for increasing gene expression and has the potential to recapitulate the diverse biology seen in IGF1 signaling through the overexpression of multiple IGF1 isoforms. Using a CRISPR-Cas9 gene activation approach, we showed that the expression of multiple IGF1 or Igf1 mRNA variants can be increased in human and mouse skeletal muscle myoblast cell lines using a single-guide RNA (sgRNA). We found increased IGF1 protein levels in the cell culture media and increased cellular phosphorylation of AKT1, the main effector of IGF1 signaling. We also showed that the expression of Class 1 or Class 2 mRNA variants can be selectively increased by changing the sgRNA target location. The expression of multiple IGF1 or Igf1 mRNA transcript variants in human and mouse skeletal muscle myoblasts promoted myotube differentiation and prevented dexamethasone-induced atrophy in myotubes in vitro. Our findings suggest that this novel approach for enhancing IGF1 signaling has potential therapeutic applications for treating skeletal muscle atrophy.


Asunto(s)
Sistemas CRISPR-Cas , Diferenciación Celular , Factor I del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/citología , Atrofia Muscular/patología , Mioblastos/citología , Activación Transcripcional , Animales , Antiinflamatorios/farmacología , Secuencia de Bases , Proliferación Celular , Células Cultivadas , Dexametasona/farmacología , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Fosforilación , Isoformas de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia , Transducción de Señal
2.
J Mol Cell Cardiol ; 138: 12-22, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678351

RESUMEN

We used a screening strategy to test for reprogramming factors for the conversion of human cardiac progenitor cells (CPCs) into Pacemaker-like cells. Human transcription factors SHOX2, TBX3, TBX5, TBX18, and the channel protein HCN2, were transiently induced as single factors and in trio combinations into CPCs, first transduced with the connexin 30.2 (CX30.2) mCherry reporter. Following screens for reporter CX30.2 mCherry gene activation and FACS enrichment, we observed the definitive expression of many pacemaker specific genes; including, CX30.2, KCNN4, HCN4, HCN3, HCN1, and SCN3b. These findings suggest that the SHOX2, HCN2, and TBX5 (SHT5) combination of transcription factors is a much better candidate in driving the CPCs into Pacemaker-like cells than other combinations and single transcription factors. Additionally, single-cell RNA sequencing of SHT5 mCherry+ cells revealed cellular enrichment of pacemaker specific genes including TBX3, KCNN4, CX30.2, and BMP2, as well as pacemaker specific potassium and calcium channels (KCND2, KCNK2, and CACNB1). In addition, similar to human and mouse sinoatrial node (SAN) studies, we also observed the down-regulation of NKX2.5. Patch-clamp recordings of the converted Pacemaker-like cells exhibited HCN currents demonstrated the functional characteristic of pacemaker cells. These studies will facilitate the development of an optimal Pacemaker-like cell-based therapy within failing hearts through the recovery of SAN dysfunction.


Asunto(s)
Relojes Biológicos , Diferenciación Celular , Miocardio/citología , Células Madre/citología , Conexinas/metabolismo , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Factores de Transcripción/metabolismo , Transcriptoma/genética
3.
J Biol Chem ; 293(30): 11659-11673, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29891551

RESUMEN

Epigenetic regulation is critical in normal cardiac development. We have demonstrated that the deletion of Jarid2 (Jumonji (Jmj) A/T-rich interaction domain 2) in mice results in cardiac malformations recapitulating human congenital cardiac disease and dysregulation of gene expression. However, the precise developmental and epigenetic functions of Jarid2 within the developing heart remain to be elucidated. Here, we determined the cardiac-specific functions of Jarid2 and the genetic networks regulated by Jarid2. Jarid2 was deleted using different cardiac-specific Cre mice. The deletion of Jarid2 by Nkx2.5-Cre mice (Jarid2Nkx) caused cardiac malformations including ventricular septal defects, thin myocardium, hypertrabeculation, and neonatal lethality. Jarid2Nkx mice exhibited elevated expression of neural genes, cardiac jelly, and other key factors including Isl1 and Bmp10 in the developing heart. By employing combinatorial genome-wide approaches and molecular analyses, we showed that Jarid2 in the myocardium regulates a subset of Jarid2 target gene expression and H3K27me3 enrichment during heart development. Specifically, Jarid2 was required for PRC2 occupancy and H3K27me3 at the Isl1 promoter locus, leading to the proper repression of Isl1 expression. In contrast, Jarid2 deletion in differentiated cardiomyocytes by cTnt-Cre mice caused no gross morphological defects or neonatal lethality. Thus, the early deletion of Jarid2 in cardiac progenitors, prior to the differentiation of cardiac progenitors into cardiomyocytes, results in morphogenetic defects manifested later in development. Our studies reveal that there is a critical window during early cardiac progenitor differentiation when Jarid2 is crucial to establish the epigenetic landscape at later stages of development.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Corazón/embriología , Complejo Represivo Polycomb 2/genética , Animales , Desarrollo Embrionario , Femenino , Eliminación de Gen , Redes Reguladoras de Genes , Cardiopatías Congénitas/patología , Código de Histonas , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología
4.
J Cell Sci ; 130(15): 2551-2563, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28600325

RESUMEN

Nucleosome assembly proceeds through DNA replication-coupled or replication-independent mechanisms. For skeletal myocytes, whose nuclei have permanently exited the cell cycle, replication-independent assembly is the only mode available for chromatin remodeling. For this reason, any nucleosome composition alterations accompanying transcriptional responses to physiological signals must occur through a DNA replication-independent pathway. HIRA is the histone chaperone primarily responsible for replication-independent incorporation of histone variant H3.3 across gene bodies and regulatory regions. Thus, HIRA would be expected to play an important role in epigenetically regulating myocyte gene expression. The objective of this study was to determine the consequence of eliminating HIRA from mouse skeletal myocytes. At 6 weeks of age, myofibers lacking HIRA showed no pathological abnormalities; however, genes involved in transcriptional regulation were downregulated. By 6 months of age, myofibers lacking HIRA exhibited hypertrophy, sarcolemmal perforation and oxidative damage. Genes involved in muscle growth and development were upregulated, but those associated with responses to cellular stresses were downregulated. These data suggest that elimination of HIRA produces a hypertrophic response in skeletal muscle and leaves myofibers susceptible to stress-induced degeneration.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Chaperonas de Histonas/deficiencia , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Estrés Oxidativo , Factores de Transcripción/deficiencia , Animales , Hipertrofia , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología
5.
Nucleic Acids Res ; 45(6): 3046-3058, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27940555

RESUMEN

The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.


Asunto(s)
Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Miocitos del Músculo Liso/metabolismo , Acetilación , Animales , Línea Celular , Núcleo Celular/enzimología , Células Cultivadas , Cromatina/enzimología , Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Miocitos del Músculo Liso/enzimología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Ratas , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(34): 9551-6, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27512039

RESUMEN

Understanding the mechanisms of early cardiac fate determination may lead to better approaches in promoting heart regeneration. We used a mesoderm posterior 1 (Mesp1)-Cre/Rosa26-EYFP reporter system to identify microRNAs (miRNAs) enriched in early cardiac progenitor cells. Most of these miRNA genes bear MESP1-binding sites and active histone signatures. In a calcium transient-based screening assay, we identified miRNAs that may promote the cardiomyocyte program. An X-chromosome miRNA cluster, miR-322/-503, is the most enriched in the Mesp1 lineage and is the most potent in the screening assay. It is specifically expressed in the looping heart. Ectopic miR-322/-503 mimicking the endogenous temporal patterns specifically drives a cardiomyocyte program while inhibiting neural lineages, likely by targeting the RNA-binding protein CUG-binding protein Elav-like family member 1 (Celf1). Thus, early miRNAs in lineage-committed cells may play powerful roles in cell-fate determination by cross-suppressing other lineages. miRNAs identified in this study, especially miR-322/-503, are potent regulators of early cardiac fate.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CELF1/genética , Proteínas CELF1/metabolismo , Diferenciación Celular , Linaje de la Célula/genética , Embrión de Mamíferos , Perfilación de la Expresión Génica , Genes Reporteros , Integrasas/genética , Integrasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , MicroARNs/metabolismo , Morfogénesis/genética , Células Madre Embrionarias de Ratones/citología , Miocitos Cardíacos/citología , Cultivo Primario de Células , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transducción de Señal
7.
Stem Cells ; 35(8): 1913-1923, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28580685

RESUMEN

During cardiac development, DNA binding transcription factors and epigenetic modifiers regulate gene expression in cardiac progenitor cells (CPCs). We have previously shown that Yin Yang 1 (YY1) is essential for the commitment of mesodermal precursors into CPCs. However, the role of YY1 in the maintenance of CPC phenotype and their differentiation into cardiomyocytes is unknown. In this study, we found, by genome-wide transcriptional profiling and phenotypic assays, that YY1 overexpression prevents cardiomyogenic differentiation and maintains the proliferative capacity of CPCs. We show further that the ability of YY1 to regulate CPC phenotype is associated with its ability to modulate histone modifications specifically at a developmentally critical enhancer of Nkx2-5 and other key cardiac transcription factor such as Tbx5. Specifically, YY1 overexpression helps to maintain markers of gene activation such as the acetylation of histone H3 at lysine 9 (H3K9Ac) and lysine 27 (H3K27Ac) as well as trimethylation at lysine 4 (H3K4Me3) at the Nkx2-5 cardiac enhancer. Furthermore, transcription factors associated proteins such as PoIII, p300, and Brg1 are also enriched at the Nkx2-5 enhancer with YY1 overexpression. The biological activities of YY1 in CPCs appear to be cell autonomous, based coculture assays in differentiating embryonic stem cells. Altogether, these results demonstrate that YY1 overexpression is sufficient to maintain a CPC phenotype through its ability to sustain the presence of activating epigenetic/chromatin marks at key cardiac enhancers. Stem Cells 2017;35:1913-1923.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Miocardio/citología , Factor de Transcripción YY1/metabolismo , Animales , Sitios de Unión , Diferenciación Celular/genética , Línea Celular , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Mutación con Ganancia de Función , Regulación de la Expresión Génica , Proteína Homeótica Nkx-2.5/genética , Ratones
8.
Mol Cell ; 38(2): 191-201, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20417598

RESUMEN

SUMO-specific protease 2 (SENP2) has a broad de-SUMOylation activity in vitro. However, the biological function of SENP2 is largely unknown. Here, we show that deletion of SENP2 gene in mouse causes defects in the embryonic heart and reduces the expression of Gata4 and Gata6, which are essential for cardiac development. SENP2 regulates transcription of Gata4 and Gata6 mainly through alteration of occupancy of Pc2/CBX4, a polycomb repressive complex 1 (PRC1) subunit, on its promoters. We demonstrate that Pc2/CBX4 is a target of SENP2 in vivo and that SUMOylation is essential for Pc2/CBX4-mediated PRC1 recruitment to methylated histone 3 at K27 (H3K27me3). In SENP2 null embryos, SUMOylated Pc2/CBX4 accumulates and Pc2/CBX4 occupancy on the promoters of PcG target genes is markedly increased, leading to repression of Gata4 and Gata6 transcription. Our results reveal a critical role for de-SUMOylation in the regulation of PcG target gene expression.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Complejos Multienzimáticos/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Cisteína Endopeptidasas , Embrión de Mamíferos , Ratones , Ratones Noqueados , Complejos Multienzimáticos/genética , Proteínas del Grupo Polycomb , Proteínas Represoras , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
9.
Genes Dev ; 24(15): 1614-9, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20679397

RESUMEN

Erythrocyte formation occurs throughout life in response to cytokine signaling. We show that microRNA-451 (miR-451) regulates erythropoiesis in vivo. Mice lacking miR-451 display a reduction in hematrocrit, an erythroid differentiation defect, and ineffective erythropoiesis in response to oxidative stress. 14-3-3zeta, an intracellular regulator of cytokine signaling that is repressed by miR-451, is up-regulated in miR-451(-/-) erythroblasts, and inhibition of 14-3-3zeta rescues their differentiation defect. These findings reveal an essential role of 14-3-3zeta as a mediator of the proerythroid differentiation actions of miR-451, and highlight the therapeutic potential of miR-451 inhibitors.


Asunto(s)
Proteínas 14-3-3/metabolismo , Diferenciación Celular , Células Eritroides/citología , Eritropoyesis/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Células Eritroides/metabolismo , Células Eritroides/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hematócrito , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Oligonucleótidos/farmacología , Regulación hacia Arriba
10.
Dev Biol ; 410(1): 86-97, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26688546

RESUMEN

The SMYD (SET and MYND domain) family of lysine methyltransferases harbor a unique structure in which the methyltransferase (SET) domain is intervened by a zinc finger protein-protein interaction MYND domain. SMYD proteins methylate both histone and non-histone substrates and participate in diverse biological processes including transcriptional regulation, DNA repair, proliferation and apoptosis. Smyd1 is unique among the five family members in that it is specifically expressed in striated muscles. Smyd1 is critical for development of the right ventricle in mice. In zebrafish, Smyd1 is necessary for sarcomerogenesis in fast-twitch muscles. Smyd1 is expressed in the skeletal muscle lineage throughout myogenesis and in mature myofibers, shuttling from nucleus to cytosol during myoblast differentiation. Because of this expression pattern, we hypothesized that Smyd1 plays multiple roles at different stages of myogenesis. To determine the role of Smyd1 in mammalian myogenesis, we conditionally eliminated Smyd1 from the skeletal muscle lineage at the myoblast stage using Myf5(cre). Deletion of Smyd1 impaired myoblast differentiation, resulted in fewer myofibers and decreased expression of muscle-specific genes. Muscular defects were temporally restricted to the second wave of myogenesis. Thus, in addition to the previously described functions for Smyd1 in heart development and skeletal muscle sarcomerogenesis, these results point to a novel role for Smyd1 in myoblast differentiation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Desarrollo de Músculos , Proteínas Musculares/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/análisis , Ratones , Fibras Musculares Esqueléticas , Proteínas Musculares/análisis , Mioblastos/citología , Factores de Transcripción/análisis
11.
Development ; 141(2): 281-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24335256

RESUMEN

Numb family proteins (NFPs), including Numb and numb-like (Numbl), are cell fate determinants for multiple progenitor cell types. Their functions in cardiac progenitor differentiation and cardiac morphogenesis are unknown. To avoid early embryonic lethality and study NFP function in later cardiac development, Numb and Numbl were deleted specifically in heart to generate myocardial double-knockout (MDKO) mice. MDKOs were embryonic lethal and displayed a variety of defects in cardiac progenitor differentiation, cardiomyocyte proliferation, outflow tract (OFT) and atrioventricular septation, and OFT alignment. By ablating NFPs in different cardiac populations followed by lineage tracing, we determined that NFPs in the second heart field (SHF) are required for OFT and atrioventricular septation and OFT alignment. MDKOs displayed an SHF progenitor cell differentiation defect, as revealed by a variety of methods including mRNA deep sequencing. Numb regulated cardiac progenitor cell differentiation in an endocytosis-dependent manner. Studies including the use of a transgenic Notch reporter line showed that Notch signaling was upregulated in the MDKO. Suppression of Notch1 signaling in MDKOs rescued defects in p57 expression, proliferation and trabecular thickness. Further studies showed that Numb inhibits Notch1 signaling by promoting the degradation of the Notch1 intracellular domain in cardiomyocytes. This study reveals that NFPs regulate trabecular thickness by inhibiting Notch1 signaling, control cardiac morphogenesis in a Notch1-independent manner, and regulate cardiac progenitor cell differentiation in an endocytosis-dependent manner. The function of NFPs in cardiac progenitor differentiation and cardiac morphogenesis suggests that NFPs might be potential therapeutic candidates for cardiac regeneration and congenital heart diseases.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Corazón/embriología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular , Femenino , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Morfogénesis/genética , Morfogénesis/fisiología , Miocardio/citología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Embarazo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal
12.
Development ; 140(9): 1946-57, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23571217

RESUMEN

Trabeculation and compaction of the embryonic myocardium are morphogenetic events crucial for the formation and function of the ventricular walls. Fkbp1a (FKBP12) is a ubiquitously expressed cis-trans peptidyl-prolyl isomerase. Fkbp1a-deficient mice develop ventricular hypertrabeculation and noncompaction. To determine the physiological function of Fkbp1a in regulating the intercellular and intracellular signaling pathways involved in ventricular trabeculation and compaction, we generated a series of Fkbp1a conditional knockouts. Surprisingly, cardiomyocyte-restricted ablation of Fkbp1a did not give rise to the ventricular developmental defect, whereas endothelial cell-restricted ablation of Fkbp1a recapitulated the ventricular hypertrabeculation and noncompaction observed in Fkbp1a systemically deficient mice, suggesting an important contribution of Fkbp1a within the developing endocardia in regulating the morphogenesis of ventricular trabeculation and compaction. Further analysis demonstrated that Fkbp1a is a novel negative modulator of activated Notch1. Activated Notch1 (N1ICD) was significantly upregulated in Fkbp1a-ablated endothelial cells in vivo and in vitro. Overexpression of Fkbp1a significantly reduced the stability of N1ICD and direct inhibition of Notch signaling significantly reduced hypertrabeculation in Fkbp1a-deficient mice. Our findings suggest that Fkbp1a-mediated regulation of Notch1 plays an important role in intercellular communication between endocardium and myocardium, which is crucial in controlling the formation of the ventricular walls.


Asunto(s)
Endocardio/metabolismo , Ventrículos Cardíacos/patología , Miocardio/metabolismo , Receptor Notch1/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Desarrollo Embrionario , Endocardio/embriología , Endocardio/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados/embriología , Ratones Noqueados/metabolismo , Miocardio/patología , Cresta Neural/metabolismo , Cresta Neural/patología , Fenotipo , Receptor Notch1/genética , Transducción de Señal , Proteínas de Unión a Tacrolimus/genética , Transfección
13.
Stem Cells ; 33(11): 3254-65, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26205879

RESUMEN

MESP1 is considered the first sign of the nascent cardiac mesoderm and plays a critical role in the appearance of cardiac progenitors, while exhibiting a transient expression in the developing embryo. We profiled the transcriptome of a pure population of differentiating MESP1-marked cells and found that they chiefly contribute to the mesendoderm lineage. High-throughput sequencing of endogenous MESP1-bound DNA revealed that MESP1 preferentially binds to two variants of E-box sequences and activates critical mesendoderm modulators, including Eomes, Gata4, Wnt5a, Wnt5b, Mixl1, T, Gsc, and Wnt3. These mesendoderm markers were enriched in the MESP1 marked population before the appearance of cardiac progenitors and myocytes. Further, MESP1-binding is globally associated with H(3)K(27) acetylation, supporting a novel pivotal role of it in regulating target gene epigenetics. Therefore, MESP1, the pioneer cardiac factor, primarily directs the appearance of mesendoderm, the intermediary of the earliest progenitors of mesoderm and endoderm organogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endodermo/fisiología , Marcación de Gen , Estudio de Asociación del Genoma Completo/métodos , Mesodermo/fisiología , Activación Transcripcional/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/fisiología , Línea Celular Transformada , Linaje de la Célula/fisiología , Células Madre Embrionarias/fisiología , Endodermo/embriología , Marcación de Gen/métodos , Masculino , Mesodermo/embriología , Ratones , Miocitos Cardíacos/fisiología , Unión Proteica/fisiología
14.
PLoS Genet ; 9(9): e1003785, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068957

RESUMEN

Among the most common human congenital anomalies, cleft lip and palate (CL/P) affects up to 1 in 700 live births. MicroRNA (miR)s are small, non-coding RNAs that repress gene expression post-transcriptionally. The miR-17-92 cluster encodes six miRs that have been implicated in human cancers and heart development. We discovered that miR-17-92 mutant embryos had severe craniofacial phenotypes, including incompletely penetrant CL/P and mandibular hypoplasia. Embryos that were compound mutant for miR-17-92 and the related miR-106b-25 cluster had completely penetrant CL/P. Expression of Tbx1 and Tbx3, the DiGeorge/velo-cardio-facial (DGS) and Ulnar-mammary syndrome (UMS) disease genes, was expanded in miR-17-92 mutant craniofacial structures. Both Tbx1 and Tbx3 had functional miR seed sequences that mediated gene repression. Analysis of miR-17-92 regulatory regions uncovered conserved and functional AP-2α recognition elements that directed miR-17-92 expression. Together, our data indicate that miR-17-92 modulates expression of critical T-box transcriptional regulators during midface development and is itself a target of Bmp-signaling and the craniofacial pioneer factor AP-2α. Our data are the first genetic evidence that an individual miR or miR cluster is functionally important in mammalian CL/P.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , MicroARNs/genética , Factor de Transcripción AP-2/genética , Animales , Secuencia de Bases , Labio Leporino/patología , Fisura del Paladar/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos/patología , Regulación de la Expresión Génica , Humanos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal , Proteínas de Dominio T Box/genética , Factor de Transcripción AP-2/metabolismo
15.
Dev Dyn ; 244(3): 457-67, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25428115

RESUMEN

BACKGROUND: Multiple bone morphogenetic protein (BMP) genes are expressed in the developing heart from the initiation to late-differentiation stages, and play pivotal roles in cardiovascular development. In this study, we investigated the requirement of BMP activity in heart development by transgenic over-expression of extracellular BMP antagonist Noggin. RESULTS: Using Nkx2.5-Cre to drive lineage-restricted Noggin within cardiomyocyte progenitors, we show persistent Noggin arrests cardiac development at the linear heart stage. This is coupled with a significantly reduced cell proliferation rate, subsequent cardiomyocyte programmed cell death and reduction of downstream intracellular pSMAD1/5/8 expression. Noggin mutants exhibit reduced heartbeat which likely results in subsequent fully penetrant in utero lethality. Significantly, confocal and electron micrographic examination revealed considerably fewer contractile elements, as well as a lack of maturation of actin-myosin microfilaments. Molecular analysis demonstrated that ectopic Noggin-expressing regions in the early heart's pacemaker region, failed to express the potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 (Hcn4), resulting in an overall decrease in Hcn4 levels. CONCLUSIONS: Combined, our results reveal a novel role for BMP signaling in the progression of heart development from the tubular heart stage to the looped stage by means of regulation of proliferation and promotion of maturation of the in utero heart's contractile apparatus and pacemaker.


Asunto(s)
Proteínas Portadoras , Muerte Fetal , Regulación del Desarrollo de la Expresión Génica , Contracción Miocárdica/genética , Miocitos Cardíacos , Células Madre , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Embarazo , Células Madre/metabolismo , Células Madre/patología
17.
J Biol Chem ; 289(25): 17721-31, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24811170

RESUMEN

We have previously demonstrated the potential role of steroid receptor coactivator-2 (SRC-2) as a co-regulator in the transcription of critical molecules modulating cardiac function and metabolism in normal and stressed hearts. The present study seeks to extend the previous information by demonstrating SRC-2 fulfills this role by serving as a critical coactivator for the transcription and activity of critical transcription factors known to control cardiac growth and metabolism as well as in their downstream signaling. This knowledge broadens our understanding of the mechanism by which SRC-2 acts in normal and stressed hearts and allows further investigation of the transcriptional modifications mediating different types and degrees of cardiac stress. Moreover, the genetic manipulation of SRC-2 in this study is specific for the heart and thereby eliminating potential indirect effects of SRC-2 deletion in other organs. We have shown that SRC-2 is critical to transcriptional control modulated by MEF2, GATA-4, and Tbx5, thereby enhancing gene expression associated with cardiac growth. Additionally, we describe SRC-2 as a novel regulator of PPARα expression, thus controlling critical steps in metabolic gene expression. We conclude that through regulation of cardiac transcription factor expression and activity, SRC-2 is a critical transcriptional regulator of genes important for cardiac growth, structure, and metabolism, three of the main pathways altered during the cardiac stress response.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Factores de Transcripción/metabolismo , Animales , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Miocardio/citología , Coactivador 2 del Receptor Nuclear/genética , Factores de Transcripción/genética
18.
Stem Cells ; 32(6): 1515-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24585688

RESUMEN

Cardiac muscle differentiation in vivo is guided by sequential growth factor signals, including endoderm-derived diffusible factors, impinging on cardiogenic genes in the developing mesoderm. Previously, by RNA interference in AB2.2 mouse embryonic stem cells (mESCs), we identified the endodermal transcription factor Sox17 as essential for Mesp1 induction in primitive mesoderm and subsequent cardiac muscle differentiation. However, downstream effectors of Sox17 remained to be proven functionally. In this study, we used genome-wide profiling of Sox17-dependent genes in AB2.2 cells, RNA interference, chromatin immunoprecipitation, and luciferase reporter genes to dissect this pathway. Sox17 was required not only for Hhex (a second endodermal transcription factor) but also for Cer1, a growth factor inhibitor from endoderm that, like Hhex, controls mesoderm patterning in Xenopus toward a cardiac fate. Suppressing Hhex or Cer1 blocked cardiac myogenesis, although at a later stage than induction of Mesp1/2. Hhex was required but not sufficient for Cer1 expression. Over-expression of Sox17 induced endogenous Cer1 and sequence-specific transcription of a Cer1 reporter gene. Forced expression of Cer1 was sufficient to rescue cardiac differentiation in Hhex-deficient cells. Thus, Hhex and Cer1 are indispensable components of the Sox17 pathway for cardiopoiesis in mESCs, acting at a stage downstream from Mesp1/2.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Miocardio/metabolismo , Proteínas/metabolismo , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/genética , Citocinas , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma , Subunidades beta de Inhibinas/metabolismo , Mesodermo/citología , Ratones , Modelos Biológicos , Desarrollo de Músculos/genética , Miocardio/citología , Proteína Nodal/metabolismo , Unión Proteica/genética , Transducción de Señal/genética
19.
Nature ; 460(7252): 287-91, 2009 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-19483677

RESUMEN

Diverse histone modifications are catalysed and recognized by various specific proteins, establishing unique modification patterns that act as transcription signals. In particular, histone H3 trimethylation at lysine 36 (H3K36me3) is associated with actively transcribed regions and has been proposed to provide landmarks for continuing transcription; however, the control mechanisms and functions of H3K36me3 in higher eukaryotes are unknown. Here we show that the H3K36me3-specific histone methyltransferase (HMTase) Wolf-Hirschhorn syndrome candidate 1 (WHSC1, also known as NSD2 or MMSET) functions in transcriptional regulation together with developmental transcription factors whose defects overlap with the human disease Wolf-Hirschhorn syndrome (WHS). We found that mouse Whsc1, one of five putative Set2 homologues, governed H3K36me3 along euchromatin by associating with the cell-type-specific transcription factors Sall1, Sall4 and Nanog in embryonic stem cells, and Nkx2-5 in embryonic hearts, regulating the expression of their target genes. Whsc1-deficient mice showed growth retardation and various WHS-like midline defects, including congenital cardiovascular anomalies. The effects of Whsc1 haploinsufficiency were increased in Nkx2-5 heterozygous mutant hearts, indicating their functional link. We propose that WHSC1 functions together with developmental transcription factors to prevent the inappropriate transcription that can lead to various pathophysiologies.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Síndrome de Wolf-Hirschhorn/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Lisina/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Proteína Homeótica Nanog , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Transcripción Genética
20.
Proc Natl Acad Sci U S A ; 109(32): 13016-21, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22826236

RESUMEN

Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR(+). However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca(2+) transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis.


Asunto(s)
Transdiferenciación Celular/fisiología , Fibroblastos/citología , Mioblastos Cardíacos/citología , Proteína Proto-Oncogénica c-ets-2/metabolismo , Piel/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Transdiferenciación Celular/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Humanos , Ratones , Mioblastos Cardíacos/fisiología , Reacción en Cadena de la Polimerasa , Proteína Proto-Oncogénica c-ets-2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA