RESUMEN
Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.
Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Vesículas Extracelulares/patología , Células Madre Neoplásicas/metabolismo , Pulmón/patología , Microambiente TumoralRESUMEN
Cancer maintenance, metastatic dissemination and drug resistance are sustained by cancer stem cells (CSCs). Triple negative breast cancer (TNBC) is the breast cancer subtype with the highest number of CSCs and the poorest prognosis. Here, we aimed to identify potential drugs targeting CSCs to be further employed in combination with standard chemotherapy in TNBC treatment. The anti-CSC efficacy of up to 17 small drugs was tested in TNBC cell lines using cell viability assays on differentiated cancer cells and CSCs. Then, the effect of 2 selected drugs (8-quinolinol -8Q- and niclosamide -NCS-) in the cancer stemness features were evaluated using mammosphere growth, cell invasion, migration and anchorage-independent growth assays. Changes in the expression of stemness genes after 8Q or NCS treatment were also evaluated. Moreover, the potential synergism of 8Q and NCS with PTX on CSC proliferation and stemness-related signaling pathways was evaluated using TNBC cell lines, CSC-reporter sublines, and CSC-enriched mammospheres. Finally, the efficacy of NCS in combination with PTX was analyzed in vivo using an orthotopic mouse model of MDA-MB-231 cells. Among all tested drug candidates, 8Q and NCS showed remarkable specific anti-CSC activity in terms of CSC viability, migration, invasion and anchorage independent growth reduction in vitro. Moreover, specific 8Q/PTX and NCS/PTX ratios at which both drugs displayed a synergistic effect in different TNBC cell lines were identified. The sole use of PTX increased the relative presence of CSCs in TNBC cells, whereas the combination of 8Q and NCS counteracted this pro-CSC activity of PTX while significantly reducing cell viability. In vivo, the combination of NCS with PTX reduced tumor growth and limited the dissemination of the disease by reducing circulating tumor cells and the incidence of lung metastasis. The combination of 8Q and NCS with PTX at established ratios inhibits both the proliferation of differentiated cancer cells and the viability of CSCs, paving the way for more efficacious TNBC treatments.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Niclosamida/farmacología , Niclosamida/uso terapéutico , Oxiquinolina , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Even though manufacturers claim that the dermal fillers are nontoxic and nonimmunogenic, adverse events may occur. Clinically and histologically, most of the late onset adverse events present as an inflammatory response. To assess whether HLA polymorphisms are associated with late-onset inflammatory adverse events related to dermal fillers. A total of 211 patients were included, of whom 129 experienced late-onset inflammatory adverse events to different fillers (Inflammation group) and 82 who did not (Reference group). Patients completed a standardized questionnaire and provided a blood sample or oral swap for HLA testing. The study population consisted of 188 (89%) women and 23 (11%) men. The two study groups were similar in the distributions of filler type, location of injecting, allergy, autoimmune disease, gender, age, ethnicity, and smoking status. Of the 211 patients in the sample, 25 had the combination of HLA subtype-B*08 and HLA subtype-DRB1*03. This was 16.3% of the inflammatory group and 4.9% of the reference group. This combination of HLA subtypes was associated with an almost 4-fold increase in the odds of developing immune mediated adverse events (odds ratio = 3.79, 95% CI 1.25-11.48). Genetic polymorphisms such as HLA combinations may identify patients at risk of developing late onset immune mediated adverse events to dermal fillers.
Asunto(s)
Rellenos Dérmicos/efectos adversos , Antígenos HLA-B/genética , Cadenas HLA-DRB1/genética , Enfermedades Autoinmunes , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Hipersensibilidad , Inflamación , MasculinoRESUMEN
Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients. In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability. Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease. Through a risk analysis and a Design of Experiments (DoE), we obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.
RESUMEN
Chronic liver disease (CLD) has no effective treatments apart from reducing its complications. Simvastatin has been tested as vasoprotective drug in experimental models of CLD showing promising results, but also limiting adverse effects. Two types of Pluronic® carriers loading simvastatin (PM108-simv and PM127-simv) as a drug delivery system were developed to avoid these toxicities while increasing the therapeutic window of simvastatin. PM127-simv showed the highest rates of cell internalization in rat liver sinusoidal endothelial cells (LSECs) and significantly lower toxicity than free simvastatin, improving cell phenotype. The in vivo biodistribution was mainly hepatic with 50% of the injected PM found in the liver. Remarkably, after one week of administration in a model of CLD, PM127-simv demonstrated superior effect than free simvastatin in reducing portal hypertension. Moreover, no signs of toxicity of PM127-simv were detected. Our results indicate that simvastatin targeted delivery to LSEC is a promising therapeutic approach for CLD.
Asunto(s)
Sistemas de Liberación de Medicamentos , Cirrosis Hepática/tratamiento farmacológico , Hígado/efectos de los fármacos , Simvastatina/farmacología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Cirrosis Hepática/patología , Micelas , Polímeros/química , Polímeros/farmacología , Ratas , Simvastatina/química , Distribución Tisular/efectos de los fármacosRESUMEN
Tumor recurrence, metastatic spread and progressive gain of chemo-resistance of advanced cancers are sustained by the presence of cancer stem cells (CSCs) within the tumor. Targeted therapies with the aim to eradicate these cells are thus highly regarded. However, often the use of new anti-cancer therapies is hampered by pharmacokinetic demands. Drug delivery through nanoparticles has great potential to increase efficacy and reduce toxicity and adverse effects. However, its production has to be based on intelligent design. Likewise, we developed polymeric nanoparticles loaded with Zileuton™, a potent inhibitor of cancer stem cells (CSCs), which was chosen based on high throughput screening. Its great potential for CSCs treatment was subsequently demonstrated in in vitro and in in vivo CSC fluorescent models. Encapsulated Zileuton™ reduces amount of CSCs within the tumor and effectively blocks the circulating tumor cells (CTCs) in the blood stream and metastatic spread.
Asunto(s)
Neoplasias de la Mama , Hidroxiurea/análogos & derivados , Micelas , Células Neoplásicas Circulantes , Células Madre Neoplásicas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Hidroxiurea/química , Hidroxiurea/farmacología , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Reduced RHOA signalling has been shown to increase the growth/metastatic potential of colorectal tumours. However, the mechanisms of inactivation of RHOA signalling in colon cancer have not been characterised. METHODS: A panel of colorectal cancer cell lines and large cohorts of primary tumours were used to investigate the expression and activity of RHOA, as well as the presence of RHOA mutations/deletions and promoter methylation affecting RHOA. Changes in RHOA expression were assessed by western blotting and qPCR after modulation of microRNAs, SMAD4 and c-MYC. RESULTS: We show here that RHOA point mutations and promoter hypermethylation do not significantly contribute to the large variability of RHOA expression observed among colorectal tumours. However, RHOA copy number loss was observed in 16% of colorectal tumours and this was associated with reduced RHOA expression. Moreover, we show that miR-200a/b/429 downregulates RHOA in colorectal cancer cells. In addition, we found that TGF-ß/SMAD4 upregulates the RHOA promoter. Conversely, RHOA expression is transcriptionally downregulated by canonical Wnt signalling through the Wnt target gene c-MYC that interferes with the binding of SP1 to the RHOA promoter in colon cancer cells. CONCLUSIONS: We demonstrate a complex pattern of inactivation of the tumour suppressor gene RHOA in colon cancer cells through genetic, transcriptional and post-transcriptional mechanisms.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Variaciones en el Número de Copia de ADN , Regulación hacia Abajo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias Colorrectales/genética , Metilación de ADN , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Mutación Puntual , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , Activación Transcripcional , Vía de Señalización WntRESUMEN
Glutathione degradable polyurethane-polyurea nanoparticles (PUUa NP) with a disulfide-rich multiwalled structure and a cyclic RGD peptide as a targeting moiety were synthesized, incorporating a very lipophilic chemotherapeutic drug named Plitidepsin. In vitro studies indicated that encapsulated drug maintained and even improved its cytotoxic activity while in vivo toxicity studies revealed that the maximum tolerated dose (MTD) of Plitidepsin could be increased three-fold after encapsulation. We also found that pharmacokinetic parameters such as maximum concentration (Cmax), area under the curve (AUC) and plasma half-life were significantly improved for Plitidepsin loaded in PUUa NP. Moreover, biodistribution assays in mice showed that RGD-decorated PUUa NP accumulate less in spleen and liver than non-targeted conjugates, suggesting that RGD-decorated nanoparticles avoid sequestration by macrophages from the reticuloendothelial system. Overall, our results indicate that polyurethane-polyurea nanoparticles represent a very valuable nanoplatform for the delivery of lipophilic drugs by improving their toxicological, pharmacokinetic and whole-body biodistribution profiles.
Asunto(s)
Antineoplásicos/farmacocinética , Depsipéptidos/farmacocinética , Sistemas de Liberación de Medicamentos , Integrina alfaVbeta3/antagonistas & inhibidores , Nanopartículas/administración & dosificación , Polímeros/química , Poliuretanos/química , Animales , Antineoplásicos/administración & dosificación , Depsipéptidos/administración & dosificación , Portadores de Fármacos , Femenino , Ratones , Nanopartículas/química , Péptidos Cíclicos , Distribución TisularRESUMEN
Protein components of the spliceosome are highly conserved in eukaryotes and can influence several steps of the gene expression process. RSR-2, the Caenorhabditis elegans ortholog of the human spliceosomal protein SRm300/SRRM2, is essential for viability, in contrast to the yeast ortholog Cwc21p. We took advantage of mutants and RNA interference (RNAi) to study rsr-2 functions in C. elegans, and through genetic epistasis analysis found that rsr-2 is within the germline sex determination pathway. Intriguingly, transcriptome analyses of rsr-2(RNAi) animals did not reveal appreciable splicing defects but instead a slight global decrease in transcript levels. We further investigated this effect in transcription and observed that RSR-2 colocalizes with DNA in germline nuclei and coprecipitates with chromatin, displaying a ChIP-Seq profile similar to that obtained for the RNA Polymerase II (RNAPII). Consistent with a novel transcription function we demonstrate that the recruitment of RSR-2 to chromatin is splicing-independent and that RSR-2 interacts with RNAPII and affects RNAPII phosphorylation states. Proteomic analyses identified proteins associated with RSR-2 that are involved in different gene expression steps, including RNA metabolism and transcription with PRP-8 and PRP-19 being the strongest interacting partners. PRP-8 is a core component of the spliceosome and PRP-19 is the core component of the PRP19 complex, which interacts with RNAPII and is necessary for full transcriptional activity. Taken together, our study proposes that RSR-2 is a multifunctional protein whose role in transcription influences C. elegans development.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Empalmosomas/genética , Transcripción Genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Células Germinativas , Humanos , Fosforilación , ARN Polimerasa II , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Homología de Secuencia de Aminoácido , Empalmosomas/metabolismoRESUMEN
Aggresomes are protein aggregates found in mammalian cells when the intracellular protein degradation machinery is over-titered. Despite that they abound in cells producing recombinant proteins of biomedical and biotechnological interest, the physiological roles of these protein clusters and the functional status of the embedded proteins remain basically unexplored. In this work, we have determined for the first time that, like in bacterial inclusion bodies, deposition of recombinant proteins into aggresomes does not imply functional inactivation. As a model, human α-galactosidase A (GLA) has been expressed in mammalian cells as enzymatically active, mechanically stable aggresomes showing higher thermal stability than the soluble GLA version. Since aggresomes are easily produced and purified, we propose these particles as novel functional biomaterials with potential as carrier-free, self-immobilized catalyzers in biotechnology and biomedicine.
Asunto(s)
Agregado de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , alfa-Galactosidasa/metabolismo , Biotecnología/métodos , Línea Celular , Humanos , Proteínas Recombinantes/genética , alfa-Galactosidasa/genéticaRESUMEN
Obtaining high levels of pure proteins remains the main bottleneck of many scientific and biotechnological studies. Among all the available recombinant expression systems, Escherichia coli facilitates gene expression by its relative simplicity, inexpensive and fast cultivation, well-known genetics and the large number of tools available for its biotechnological application. However, recombinant expression in E. coli is not always a straightforward procedure and major obstacles are encountered when producing many eukaryotic proteins and especially membrane proteins, linked to missing posttranslational modifications, proteolysis and aggregation. In this context, many conventional and unconventional eukaryotic hosts are under exploration and development, but in some cases linked to complex culture media or processes. In this context, alternative bacterial systems able to overcome some of the limitations posed by E. coli keeping the simplicity of prokaryotic manipulation are currently emerging as convenient hosts for protein production. We have comparatively produced a "difficult-to-express" human protein, the lysosomal enzyme alpha-galactosidase A (hGLA) in E. coli and in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 cells (P. haloplanktis TAC125). While in E. coli the production of active hGLA was unreachable due to proteolytic instability and/or protein misfolding, the expression of hGLA gene in P. haloplanktis TAC125 allows obtaining active enzyme. These results are discussed in the context of emerging bacterial systems for protein production that represent appealing alternatives to the regular use of E. coli and also of more complex eukaryotic systems.
Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes/biosíntesis , alfa-Galactosidasa/biosíntesis , Biotecnología/métodos , Estabilidad de Enzimas , Humanos , Ingeniería Metabólica/métodos , Proteínas Recombinantes/genética , alfa-Galactosidasa/genéticaRESUMEN
Pulmonary delivery of drugs for both local and systemic action has gained new attention over the last decades. In this work, different amphiphilic polymers (Soluplus®, Pluronic® F68, Pluronic® F108 and Pluronic® F127) were used to produce lyophilized formulations for inhalation of insulin. Development of stimuli-responsive, namely glucose-sensitive, formulations was also attempted with the addition of phenylboronic acid (PBA). Despite influencing the in vitro release of insulin from micelles, PBA did not confer glucose-sensitive properties to formulations. Lyophilized powders with aerodynamic diameter (<6 µm) compatible with good deposition in the lungs did not present significant in vitro toxicity for respiratory cell lines. Additionally, some formulations, in particular Pluronic® F127-based formulations, enhanced the permeation of insulin through pulmonary epithelial models and underwent minimal internalization by macrophages in vitro. Overall, formulations based on polymeric micelles presenting promising characteristics were developed for the delivery of insulin by inhalation. FROM THE CLINICAL EDITOR: The ability to deliver other systemic drugs via inhalation has received renewed interests in the clinical setting. This is especially true for drugs which usually require injections for delivery, like insulin. In this article, the authors investigated their previously developed amphiphilic polymers for inhalation of insulin in an in vitro model. The results should provide basis for future in vivo studies.
Asunto(s)
Química Farmacéutica , Sistemas de Liberación de Medicamentos , Insulina/administración & dosificación , Polímeros/administración & dosificación , Administración por Inhalación , Ácidos Borónicos/administración & dosificación , Ácidos Borónicos/química , Técnicas de Cultivo de Célula , Glucosa/metabolismo , Humanos , Insulina/química , Micelas , Permeabilidad/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Polímeros/químicaRESUMEN
To be able to study the efficacy of targeted nanomedicines in marginal population of highly aggressive cancer stem cells (CSC), we have developed a novel in vitro fluorescent CSC model that allows us to visualize these cells in heterogeneous population and to monitor CSC biological performance after therapy. In this model tdTomato reporter gene is driven by CSC specific (ALDH1A1) promoter and contrary to other similar models, CSC differentiation and un-differentiation processes are not restrained and longitudinal studies are feasible. We used this model for preclinical validation of poly[(d,l-lactide-co-glycolide)-co-PEG] (PLGA-co-PEG) micelles loaded with paclitaxel. Further, active targeting against CD44 and EGFR receptors was validated in breast and colon cancer cell lines. Accordingly, specific active targeting toward surface receptors enhances the performance of nanomedicines and sensitizes CSC to paclitaxel based chemotherapy. FROM THE CLINICAL EDITOR: Many current cancer therapies fail because of the failure to target cancer stem cells. This surviving population soon proliferates and differentiates into more cancer cells. In this interesting article, the authors designed an in vitro cancer stem cell model to study the effects of active targeting using antibody-labeled micelles containing chemotherapeutic agent. This new model should allow future testing of various drug/carrier platforms before the clinical phase.
Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Células Madre Neoplásicas/efectos de los fármacos , Paclitaxel/administración & dosificación , Polietilenglicoles/química , Poliglactina 910/química , Aldehído Deshidrogenasa/genética , Familia de Aldehído Deshidrogenasa 1 , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Receptores ErbB/análisis , Femenino , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Genes Reporteros , Humanos , Receptores de Hialuranos/análisis , Micelas , Microscopía Fluorescente , Nanomedicina , Células Madre Neoplásicas/patología , Paclitaxel/farmacología , Retinal-DeshidrogenasaRESUMEN
The loss of the epithelial architecture and cell polarity/differentiation is known to be important during the tumorigenic process. Here we demonstrate that the brush border protein Myosin Ia (MYO1A) is important for polarization and differentiation of colon cancer cells and is frequently inactivated in colorectal tumors by genetic and epigenetic mechanisms. MYO1A frame-shift mutations were observed in 32% (37 of 116) of the colorectal tumors with microsatellite instability analyzed, and evidence of promoter methylation was observed in a significant proportion of colon cancer cell lines and primary colorectal tumors. The loss of polarization/differentiation resulting from MYO1A inactivation is associated with higher tumor growth in soft agar and in a xenograft model. In addition, the progression of genetically and carcinogen-initiated intestinal tumors was significantly accelerated in Myo1a knockout mice compared with Myo1a wild-type animals. Moreover, MYO1A tumor expression was found to be an independent prognostic factor for colorectal cancer patients. Patients with low MYO1A tumor protein levels had significantly shorter disease-free and overall survival compared with patients with high tumoral MYO1A (logrank test P = 0.004 and P = 0.009, respectively). The median time-to-disease recurrence in patients with low MYO1A was 1 y, compared with >9 y in the group of patients with high MYO1A. These results identify MYO1A as a unique tumor-suppressor gene in colorectal cancer and demonstrate that the loss of structural brush border proteins involved in cell polarity are important for tumor development.
Asunto(s)
Genes Supresores de Tumor , Mucosa Intestinal/metabolismo , Microvellosidades/metabolismo , Miosina Tipo I/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Humanos , Mutación , Miosina Tipo I/genética , Regiones Promotoras GenéticasRESUMEN
Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. The presence of the HDAC2 frameshift mutation causes a loss of HDAC2 protein expression and enzymatic activity and renders these cells more resistant to the usual antiproliferative and proapoptotic effects of histone deacetylase inhibitors. As such drugs may serve as therapeutic agents for cancer, our findings support the use of HDAC2 mutational status in future pharmacogenetic treatment of these individuals.
Asunto(s)
Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Mutación , Neoplasias/enzimología , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Secuencia de Aminoácidos , Antineoplásicos/uso terapéutico , Apoptosis , Ciclo Celular , Electroforesis Capilar , Histona Desacetilasa 2 , Histona Desacetilasas/química , Humanos , Datos de Secuencia Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , ARN Interferente Pequeño , Proteínas Represoras/químicaRESUMEN
BACKGROUND: Tumor cell subpopulations can either compete with each other for nutrients and physical space within the tumor niche, or co-operate for enhanced survival, or replicative or metastatic capacities. Recently, we have described co-operative interactions between two clonal subpopulations derived from the PC-3 prostate cancer cell line, in which the invasiveness of a cancer stem cell (CSC)-enriched subpopulation (PC-3M, or M) is enhanced by a non-CSC subpopulation (PC-3S, or S), resulting in their accelerated metastatic dissemination. METHODS: M and S secretomes were compared by SILAC (Stable Isotope Labeling by Aminoacids in Cell Culture). Invasive potential in vitro of M cells was analyzed by Transwell-Matrigel assays. M cells were co-injected with S cells in the dorsal prostate of immunodeficient mice and monitored by bioluminescence for tumor growth and metastatic dissemination. SPARC levels were determined by immunohistochemistry and real-time RT-PCR in tumors and by ELISA in plasma from patients with metastatic or non-metastatic prostate cancer. RESULTS: Comparative secretome analysis yielded 213 proteins differentially secreted between M and S cells. Of these, the protein most abundantly secreted in S relative to M cells was SPARC. Immunodepletion of SPARC inhibited the enhanced invasiveness of M induced by S conditioned medium. Knock down of SPARC in S cells abrogated the capacity of its conditioned medium to enhance the in vitro invasiveness of M cells and compromised their potential to boost the metastatic behavior of M cells in vivo. In most primary human prostate cancer samples, SPARC was expressed in the epithelial tumoral compartment of metastatic cases. CONCLUSIONS: The matricellular protein SPARC, secreted by a prostate cancer clonal tumor cell subpopulation displaying non-CSC properties, is a critical mediator of paracrine effects exerted on a distinct tumor cell subpopulation enriched in CSC. This paracrine interaction results in an enhanced metastatic behavior of the CSC-enriched tumor subpopulation. SPARC is expressed in the neoplastic cells of primary prostate cancer samples from metastatic cases, and could thus constitute a tumor progression biomarker and a therapeutic target in advanced prostate cancer.
Asunto(s)
Metástasis Linfática/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Osteonectina/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Epitelio/efectos de los fármacos , Epitelio/patología , Espacio Extracelular/metabolismo , Humanos , Masculino , Invasividad NeoplásicaRESUMEN
14-3-3 proteins have been extensively studied in organisms ranging from yeast to mammals and are associated with multiple roles, including fundamental processes such as the cell cycle, apoptosis and the stress response, to diseases such as cancer. In Caenorhabditis elegans, there are two 14-3-3 genes, ftt-2 and par-5. ftt-2 is expressed only in somatic lineages, whereas par-5 expression is detected in both soma and germline. During early embryonic development, par-5 is necessary to establish cell polarity. Although it is known that par-5 inactivation results in sterility, the role of this gene in germline development is poorly characterized. In the present study, we used a par-5 mutation and RNA interference to characterize par-5 functions in the germline. The lack of par-5 in germ cells caused cell cycle deregulation, the accumulation of endogenous DNA damage and genomic instability. Moreover, par-5 was required for checkpoint-induced cell cycle arrest in response to DNA-damaging agents. We propose a model in which PAR-5 regulates CDK-1 phosphorylation to prevent premature mitotic entry. This study opens a new path to investigate the mechanisms of 14-3-3 functions, which are not only essential for C. elegans development, but have also been shown to be altered in human diseases.
Asunto(s)
Proteínas 14-3-3/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Daño del ADN , Células Germinativas/metabolismo , Proteínas 14-3-3/genética , Animales , Caenorhabditis elegans/citología , Ciclo Celular , Células Germinativas/citologíaRESUMEN
BACKGROUND: Magnetic resonance imaging (MRI) plays an important role in tumor detection/diagnosis. The use of exogenous contrast agents (CAs) helps to improve the discrimination between lesion and neighbouring tissue, but most of the currently available CAs are non-specific. Assessing the performance of new, selective CAs requires exhaustive assays and large amounts of material. Accordingly, in a preliminary screening of new CAs, it is important to choose candidate compounds with good potential for in vivo efficiency. This screening method should reproduce as close as possible the in vivo environment. In this sense, a fast and reliable method to select the best candidate CAs for in vivo studies would minimize time and investment cost, and would benefit the development of better CAs. RESULTS: The post-mortem ex vivo relative contrast enhancement (RCE) was evaluated as a method to screen different types of CAs, including paramagnetic and superparamagnetic agents. In detail, sugar/gadolinium-loaded gold nanoparticles (Gd-GNPs) and iron nanoparticles (SPIONs) were tested. Our results indicate that the post-mortem ex vivo RCE of evaluated CAs, did not correlate well with their respective in vitro relaxivities. The results obtained with different Gd-GNPs suggest that the linker length of the sugar conjugate could modulate the interactions with cellular receptors and therefore the relaxivity value. A paramagnetic CA (GNP (E_2)), which performed best among a series of Gd-GNPs, was evaluated both ex vivo and in vivo. The ex vivo RCE was slightly worst than gadoterate meglumine (201.9 ± 9.3% versus 237 ± 14%, respectively), while the in vivo RCE, measured at the time-to-maximum enhancement for both compounds, pointed to GNP E_2 being a better CA in vivo than gadoterate meglumine. This is suggested to be related to the nanoparticule characteristics of the evaluated GNP. CONCLUSION: We have developed a simple, cost-effective relatively high-throughput method for selecting CAs for in vivo experiments. This method requires approximately 800 times less quantity of material than the amount used for in vivo administrations.
Asunto(s)
Medios de Contraste , Gadolinio , Oro , Hierro , Imagen por Resonancia Magnética/métodos , Nanopartículas , Animales , Medios de Contraste/química , Femenino , Gadolinio/química , Glioma/diagnóstico , Oro/química , Humanos , Hierro/química , Ratones , Ratones Endogámicos C57BL , Nanopartículas/químicaRESUMEN
The integration of therapeutic biomolecules, such as proteins and peptides, in nanovesicles is a widely used strategy to improve their stability and efficacy. However, the translation of these promising nanotherapeutics to clinical tests is still challenged by the complexity involved in the preparation of functional nanovesicles and their reproducibility, scalability, and cost production. Here we introduce a simple one-step methodology based on the use of CO2-expanded solvents to prepare multifunctional nanovesicle-bioactive conjugates. We demonstrate high vesicle-to-vesicle homogeneity in terms of size and lamellarity, batch-to-batch consistency, and reproducibility upon scaling-up. Importantly, the procedure is readily amenable to the integration/encapsulation of multiple components into the nanovesicles in a single step and yields sufficient quantities for clinical research. The simplicity, reproducibility, and scalability render this one-step fabrication process ideal for the rapid and low-cost translation of nanomedicine candidates from the bench to the clinic.
Asunto(s)
Dióxido de Carbono/química , Proteínas Fluorescentes Verdes/química , Nanoestructuras/química , Polietilenglicoles/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Línea Celular , Humanos , Estructura Molecular , Solventes/químicaRESUMEN
Rho GTPases are molecular switches regulating multiple cellular processes. To investigate the role of RhoA in normal intestinal physiology, we used a conditional mouse model overexpressing a dominant negative RhoA mutant (RhoAT19N) in the intestinal epithelium. Although RhoA inhibition did not cause an overt phenotype, increased levels of nuclear ß-catenin were observed in the small intestinal epithelium of RhoAT19N mice, and the overexpression of multiple Wnt target genes revealed a chronic activation of Wnt signaling. Elevated Wnt signaling in RhoAT19N mice and intestinal organoids did not affect the proliferation of intestinal epithelial cells but significantly interfered with their differentiation. Importantly, 17-month-old RhoAT19N mice showed a significant increase in the number of spontaneous intestinal tumors. Altogether, our results indicate that RhoA regulates the differentiation of intestinal epithelial cells and inhibits tumor initiation, likely through the control of Wnt signaling, a key regulator of proliferation and differentiation in the intestine.