Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 152(3): 725-735.e10, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37127225

RESUMEN

BACKGROUND: Mast cells (MCs) are tissue-resident immune cells that mediate IgE-dependent allergic responses. Downstream of FcεRI, an intricate network of receptor-specific signaling pathways and adaptor proteins govern MC function. The 14-3-3 family of serine-threonine phosphorylation-dependent adapter proteins are known to organize intracellular signaling. However, the role of 14-3-3 in IgE-dependent activation remains poorly defined. OBJECTIVE: We sought to determine whether 14-3-3 proteins are required for IgE-dependent MC activation and whether 14-3-3 is a viable target for the treatment of MC-mediated inflammatory diseases. METHODS: Genetic manipulation of 14-3-3ζ expression in human and mouse MCs was performed and IgE-dependent mediator release assessed. Pharmacologic inhibitors of 14-3-3 and 14-3-3ζ knockout mice were used to assess 14-3-3ζ function in a MC-dependent in vivo passive cutaneous anaphylaxis (PCA) model of allergic inflammation. Expression and function of 14-3-3ζ were assessed in human nasal polyp tissue MCs. RESULTS: IgE-dependent mediator release from human MCs was decreased by 14-3-3ζ knockdown and increased by 14-3-3ζ overexpression. Deletion of the 14-3-3ζ gene decreased IgE-dependent activation of mouse MCs in vitro and PCA responses in vivo. Furthermore, the 14-3-3 inhibitor, RB-11, which impairs dimerization of 14-3-3, inhibited cultured MC and polyp tissue MC activation and signaling downstream of the FcεRI receptor and dose-dependently attenuated PCA responses. CONCLUSION: IgE/FcεRI-mediated MC activation is positively regulated by 14-3-3ζ. We identify a critical role for this p-Ser/Thr-binding protein in the regulation of MC FcεRI signaling and IgE-dependent immune responses and show that this pathway may be amenable to pharmacologic targeting.


Asunto(s)
Anafilaxia , Receptores de IgE , Humanos , Ratones , Animales , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Mastocitos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunoglobulina E , Inflamación/metabolismo , Degranulación de la Célula
2.
Development ; 147(11)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32439763

RESUMEN

Craniofacial development is a complex morphogenic process that requires highly orchestrated interactions between multiple cell types. Blood vessel-derived angiocrine factors are known to promote proliferation of chondrocytes in Meckel's cartilage to drive jaw outgrowth, however the specific factors controlling this process remain unknown. Here, we use in vitro and ex vivo cell and tissue culture, as well as genetic mouse models, to identify IGF1 as a novel angiocrine factor directing Meckel's cartilage growth during embryonic development. We show that IGF1 is secreted by blood vessels and that deficient IGF1 signalling underlies mandibular hypoplasia in Wnt1-Cre; Vegfafl/fl mice that exhibit vascular and associated jaw defects. Furthermore, conditional removal of IGF1 from blood vessels causes craniofacial defects including a shortened mandible, and reduced proliferation of Meckel's cartilage chondrocytes. This demonstrates a crucial angiocrine role for IGF1 during craniofacial cartilage growth, and identifies IGF1 as a putative therapeutic for jaw and/or cartilage growth disorders.


Asunto(s)
Vasos Sanguíneos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Desarrollo Maxilofacial/fisiología , Animales , Antígenos CD/genética , Cadherinas/deficiencia , Cadherinas/genética , Cartílago/citología , Cartílago/metabolismo , Cartílago/patología , Línea Celular , Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Factor I del Crecimiento Similar a la Insulina/genética , Mandíbula/citología , Mandíbula/metabolismo , Ratones , Ratones Noqueados , Transducción de Señal , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Wnt1/deficiencia , Proteína Wnt1/genética
3.
BMC Biol ; 19(1): 84, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892704

RESUMEN

BACKGROUND: The dorsal domain of the neural tube is an excellent model to investigate the generation of complexity during embryonic development. It is a highly dynamic and multifaceted region being first transiently populated by prospective neural crest (NC) cells that sequentially emigrate to generate most of the peripheral nervous system. Subsequently, it becomes the definitive roof plate (RP) of the central nervous system. The RP, in turn, constitutes a patterning center for dorsal interneuron development. The factors underlying establishment of the definitive RP and its segregation from NC and dorsal interneurons are currently unknown. RESULTS: We performed a transcriptome analysis at trunk levels of quail embryos comparing the dorsal neural tube at premigratory NC and RP stages. This unraveled molecular heterogeneity between NC and RP stages, and within the RP itself. By implementing these genes, we asked whether Notch signaling is involved in RP development. First, we observed that Notch is active at the RP-interneuron interface. Furthermore, gain and loss of Notch function in quail and mouse embryos, respectively, revealed no effect on early NC behavior. Constitutive Notch activation caused a local downregulation of RP markers with a concomitant development of dI1 interneurons, as well as an ectopic upregulation of RP markers in the interneuron domain. Reciprocally, in mice lacking Notch activity, both the RP and dI1 interneurons failed to form and this was associated with expansion of the dI2 population. CONCLUSIONS: Collectively, our results offer a new resource for defining specific cell types, and provide evidence that Notch is required to establish the definitive RP, and to determine the choice between RP and interneuron fates, but not the segregation of RP from NC.


Asunto(s)
Tubo Neural , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Ratones , Cresta Neural , Estudios Prospectivos , ARN
4.
Development ; 145(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30237243

RESUMEN

The adrenal medulla is composed of neuroendocrine chromaffin cells that secrete adrenaline into the systemic circulation to maintain physiological homeostasis and enable the autonomic stress response. How chromaffin cell precursors colonise the adrenal medulla and how they become connected to central nervous system-derived preganglionic sympathetic neurons remain largely unknown. By combining lineage tracing, gene expression studies, genetic ablation and the analysis of mouse mutants, we demonstrate that preganglionic axons direct chromaffin cell precursors into the adrenal primordia. We further show that preganglionic axons and chromaffin cell precursors require class 3 semaphorin (SEMA3) signalling through neuropilins (NRP) to target the adrenal medulla. Thus, SEMA3 proteins serve as guidance cues to control formation of the adrenal neuroendocrine system by establishing appropriate connections between preganglionic neurons and adrenal chromaffin cells that regulate the autonomic stress response.


Asunto(s)
Médula Suprarrenal/inervación , Axones/metabolismo , Células Cromafines/metabolismo , Ganglios/metabolismo , Neuropilinas/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Movimiento Celular , Masculino , Ratones , Cresta Neural/citología , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo
5.
Development ; 143(11): 1907-13, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27048738

RESUMEN

The correct migration and axon extension of neurons in the developing nervous system is essential for the appropriate wiring and function of neural networks. Here, we report that O-sulfotransferases, a class of enzymes that modify heparan sulfate proteoglycans (HSPGs), are essential to regulate neuronal migration and axon development. We show that the 6-O-sulfotransferases HS6ST1 and HS6ST2 are essential for cranial axon patterning, whilst the 2-O-sulfotransferase HS2ST (also known as HS2ST1) is important to regulate the migration of facial branchiomotor (FBM) neurons in the hindbrain. We have also investigated how HS2ST interacts with other signals in the hindbrain and show that fibroblast growth factor (FGF) signalling regulates FBM neuron migration in an HS2ST-dependent manner.


Asunto(s)
Orientación del Axón , Movimiento Celular/efectos de los fármacos , Neuronas Motoras/citología , Proteoglicanos/metabolismo , Cráneo/metabolismo , Sulfatos/metabolismo , Animales , Orientación del Axón/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Cráneo/efectos de los fármacos , Sulfotransferasas/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
6.
Development ; 143(7): 1087-98, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26893342

RESUMEN

Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye.


Asunto(s)
Factor 6 de Diferenciación de Crecimiento/genética , Neurogénesis/genética , Retina/embriología , Tretinoina/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ciclo Celular/genética , Proliferación Celular , Embrión no Mamífero/embriología , Neurogénesis/fisiología , Transducción de Señal/genética , Células Madre/citología
7.
BMC Neurosci ; 20(1): 21, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036074

RESUMEN

BACKGROUND: The dorsal root ganglia (DRG) are a critical component of the peripheral nervous system, and function to relay somatosensory information from the body's periphery to sensory perception centres within the brain. The DRG are primarily comprised of two cell types, sensory neurons and glia, both of which are neural crest-derived. Notch signalling is known to play an essential role in defining the neuronal or glial fate of bipotent neural crest progenitors that migrate from the dorsal ridge of the neural tube to the sites of the DRG. However, the involvement of Notch ligands in this process and the timing at which neuronal versus glial fate is acquired has remained uncertain. RESULTS: We have used tissue specific knockout of the E3 ubiquitin ligase mindbomb1 (Mib1) to remove the function of all Notch ligands in neural crest cells. Wnt1-Cre; Mib1fl/fl mice exhibit severe DRG defects, including a reduction in glial cells, and neuronal cell death later in development. By comparing formation of sensory neurons and glia with the expression and activation of Notch signalling in these mice, we define a critical period during embryonic development in which early migrating neural crest cells become biased toward neuronal and glial phenotypes. CONCLUSIONS: We demonstrate active Notch signalling between neural crest progenitors as soon as trunk neural crest cells delaminate from the neural tube and during their early migration toward the site of the DRG. This data brings into question the timing of neuroglial fate specification in the DRG and suggest that it may occur much earlier than originally considered.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Cresta Neural/citología , Neuroglía/citología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Muerte Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Cresta Neural/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Factores de Transcripción SOXE/metabolismo , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética
8.
Proc Natl Acad Sci U S A ; 112(19): 6086-91, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25922531

RESUMEN

Jaw morphogenesis depends on the growth of Meckel's cartilage during embryogenesis. However, the cell types and signals that promote chondrocyte proliferation for Meckel's cartilage growth are poorly defined. Here we show that neural crest cells (NCCs) and their derivatives provide an essential source of the vascular endothelial growth factor (VEGF) to enhance jaw vascularization and stabilize the major mandibular artery. We further show in two independent mouse models that blood vessels promote Meckel's cartilage extension. Coculture experiments of arterial tissue with NCCs or chondrocytes demonstrated that NCC-derived VEGF promotes blood vessel growth and that blood vessels secrete factors to instruct chondrocyte proliferation. Computed tomography and X-ray scans of patients with hemifacial microsomia also showed that jaw hypoplasia correlates with mandibular artery dysgenesis. We conclude that cranial NCCs and their derivatives provide an essential source of VEGF to support blood vessel growth in the developing jaw, which in turn is essential for normal chondrocyte proliferation, and therefore jaw extension.


Asunto(s)
Síndrome de Goldenhar/fisiopatología , Mandíbula/anomalías , Mandíbula/embriología , Cresta Neural/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adolescente , Animales , Cartílago/embriología , Diferenciación Celular , Proliferación Celular , Condrocitos/metabolismo , Técnicas de Cocultivo , Femenino , Síndrome de Goldenhar/diagnóstico por imagen , Humanos , Hibridación in Situ , Masculino , Mandíbula/irrigación sanguínea , Ratones , Cresta Neural/citología , Tomografía Computarizada por Rayos X , Proteína Wnt1/genética
9.
Dev Biol ; 410(1): 98-107, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26681395

RESUMEN

Nedd4 is an E3 ubiquitin ligase that has an essential role in craniofacial development. However, how and when Nedd4 controls skull formation is ill defined. Here we have used a collection of complementary genetic mouse models to dissect the cell-autonomous roles of Nedd4 in the formation of neural crest cell derived cranial bone. Removal of Nedd4 specifically from neural crest cells leads to profound craniofacial defects with marked reduction of cranial bone that was preceded by hypoplasia of bone forming osteoblasts. Removal of Nedd4 after differentiation of neural crest cells into progenitors of chondrocytes and osteoblasts also led to profound deficiency of craniofacial bone in the absence of cartilage defects. Notably, these skull malformations were conserved when Nedd4 was specifically removed from the osteoblast lineage after specification of osteoblast precursors from mesenchymal skeletal progenitors. We further show that absence of Nedd4 in pre-osteoblasts results in decreased cell proliferation and altered osteogenic differentiation. Taken together our data demonstrate a novel cell-autonomous role for Nedd4 in promoting expansion of the osteoblast progenitor pool to control craniofacial development. Nedd4 mutant mice therefore represent a unique mouse model of craniofacial anomalies that provide an ideal resource to explore the cell-intrinsic mechanisms of neural crest cells in craniofacial morphogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Huesos Faciales/embriología , Osteogénesis , Cráneo/embriología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Linaje de la Célula , Proliferación Celular , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Cresta Neural/fisiología , Osteoblastos/citología , Proteína Smad1/fisiología
10.
BMC Dev Biol ; 17(1): 5, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28407732

RESUMEN

BACKGROUND: Cranial neural crest cells (NCCs) are a unique embryonic cell type which give rise to a diverse array of derivatives extending from neurons and glia through to bone and cartilage. Depending on their point of origin along the antero-posterior axis cranial NCCs are rapidly sorted into distinct migratory streams that give rise to axial specific structures. These migratory streams mirror the underlying segmentation of the brain with NCCs exiting the diencephalon and midbrain following distinct paths compared to those exiting the hindbrain rhombomeres (r). The genetic landscape of cranial NCCs arising at different axial levels remains unknown. RESULTS: Here we have used RNA sequencing to uncover the transcriptional profiles of mouse cranial NCCs arising at different axial levels. Whole transcriptome analysis identified over 120 transcripts differentially expressed between NCCs arising anterior to r3 (referred to as r1-r2 migratory stream for simplicity) and the r4 migratory stream. Eight of the genes differentially expressed between these populations were validated by RT-PCR with 2 being further validated by in situ hybridisation. We also explored the expression of the Neuropilins (Nrp1 and Nrp2) and their co-receptors and show that the A-type Plexins are differentially expressed in different cranial NCC streams. CONCLUSIONS: Our analyses identify a large number of genes differentially regulated between cranial NCCs arising at different axial levels. This data provides a comprehensive description of the genetic landscape driving diversity of distinct cranial NCC streams and provides novel insight into the regulatory networks controlling the formation of specific skeletal elements and the mechanisms promoting migration along different paths.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Cresta Neural/citología , Cresta Neural/crecimiento & desarrollo , Análisis de Secuencia de ARN/métodos , Animales , Movimiento Celular , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/citología , Mesencéfalo/crecimiento & desarrollo , Ratones , Proteínas del Tejido Nervioso/genética , Neuropilina-1/genética , Neuropilina-2/genética , Rombencéfalo/citología , Rombencéfalo/crecimiento & desarrollo
11.
Hum Mutat ; 37(9): 955-63, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27323706

RESUMEN

Ectrodactyly/split hand-foot malformation is genetically heterogeneous with more than 100 syndromic associations. Acinar dysplasia is a rare congenital lung lesion of unknown etiology, which is frequently lethal postnatally. To date, there have been no reports of combinations of these two phenotypes. Here, we present an infant from a consanguineous union with both ectrodactyly and autopsy confirmed acinar dysplasia. SNP array and whole-exome sequencing analyses of the affected infant identified a novel homozygous Fibroblast Growth Factor Receptor 2 (FGFR2) missense mutation (p.R255Q) in the IgIII domain (D3). Expression studies of Fgfr2 in development show localization to the affected limbs and organs. Molecular modeling and genetic and functional assays support that this mutation is at least a partial loss-of-function mutation, and contributes to ectrodactyly and acinar dysplasia only in homozygosity, unlike previously reported heterozygous activating FGFR2 mutations that cause Crouzon, Apert, and Pfeiffer syndromes. This is the first report of mutations in a human disease with ectrodactyly with pulmonary acinar dysplasia and, as such, homozygous loss-of-function FGFR2 mutations represent a unique syndrome.


Asunto(s)
Deformidades Congénitas de las Extremidades/genética , Enfermedades Pulmonares/congénito , Enfermedades Pulmonares/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Consanguinidad , Resultado Fatal , Femenino , Homocigoto , Humanos , Recién Nacido , Mutación con Pérdida de Función , Mutación Missense , Dominios Proteicos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química
12.
Dev Biol ; 404(1): 14-26, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25958091

RESUMEN

The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway regulates many cellular functions including proliferation, migration, survival and protein synthesis. Somatic mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K enzyme, are commonly associated with many human cancers as well as recently being implicated in human overgrowth syndromes. However, it is not clear if such mutations can be inherited through the germline. We have used a novel mouse model with Cre recombinase (Cre)-conditional knock-in of the common H1047R mutation into the endogenous Pik3ca gene. Heterozygous expression of the Pik3ca(H1047R) mutation in the developing mouse embryo resulted in failed 'turning' of the embryo and disrupted vascular remodelling within the embryonic and extraembryonic tissues, leading to lethality prior to E10. As vascular endothelial growth factor A (VEGF-A) signalling was disrupted in these embryos, we used Cre under the control of the Tie2 promoter to target the Pik3ca(H1047R) mutation specifically to endothelial cells. In these embryos turning occurred normally but the vascular remodelling defects and embryonic lethality remained, likely as a result of endothelial hyperproliferation. Our results confirm the lethality associated with heterozygous expression of the Pik3ca(H1047R) mutation during development and likely explain the lack of inherited germline PIK3CA mutations in humans.


Asunto(s)
Anomalías Cardiovasculares/genética , Genes Letales , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase I , Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Técnicas de Sustitución del Gen , Heterocigoto , Ratones , Mutación
13.
Genesis ; 53(11): 709-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26454009

RESUMEN

We have established a novel Cre mouse line, using genomic elements encompassing the Nrp2 locus, present within a bacterial artificial chromosome clone. By crossing this Cre driver line to R26R LacZ reporter mice, we have documented the temporal expression and lineage traced tissues in which Cre is expressed. Nrp2-Cre drives expression in primitive blood cells arising from the yolk sac, venous and lymphatic endothelial cells, peripheral sensory ganglia, and the lung bud. This mouse line will provide a new tool to researchers wishing to study the development of various tissues and organs in which this Cre driver is expressed, as well as allow tissue-specific knockout of genes of interest to study protein function. This work also presents the first evidence for expression of Nrp2 protein in a mesodermal progenitor with restricted hematopoietic potential, which will significantly advance the study of primitive erythropoiesis. genesis 53:709-717, 2015. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Linaje de la Célula , Integrasas/biosíntesis , Ratones Transgénicos , Neuropilina-2/genética , Células Madre/metabolismo , Animales , Desarrollo Embrionario/genética , Endotelio Vascular/citología , Eritrocitos/metabolismo , Ganglios/citología , Células Madre Hematopoyéticas/citología , Modelos Biológicos , Cresta Neural/citología , Células-Madre Neurales/citología
14.
J Neurosci ; 34(36): 12168-81, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186760

RESUMEN

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of ß-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.


Asunto(s)
Proteínas 14-3-3/metabolismo , Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas 14-3-3/genética , Actinas/metabolismo , Animales , Cateninas/metabolismo , Movimiento Celular , Proliferación Celular , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica
15.
J Biol Chem ; 289(16): 11194-11205, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24627491

RESUMEN

Epithelial-mesenchymal transition (EMT) is required for the specification of tissues during embryonic development and is recapitulated during the metastatic progression of tumors. The miR-200 family plays a critical role in enforcing the epithelial state with their expression lost in cells undergoing EMT. EMT can be mediated by activation of the ZEB1 and ZEB2 (ZEB) transcription factors, which repress miR-200 expression via a self-reinforcing double negative feedback loop to promote the mesenchymal state. However, it remains unclear what factors drive and maintain epithelial-specific expression of miR-200 in the absence of EMT-inducing factors. Here, we show that the transcription factor Specificity Protein 1 (Sp1) binds to the miR-200b∼200a∼429 proximal promoter and activates miR-200 expression in epithelial cells. In mesenchymal cells, Sp1 expression is maintained, but its ability to activate the miR-200 promoter is perturbed by ZEB-mediated repression. Reduction of Sp1 expression caused changes in EMT-associated markers in epithelial cells. Furthermore, we observed co-expression of Sp1 and miR-200 during mouse embryonic development wherein miR-200 expression was only lost in regions with high ZEB expression. Together, these findings indicate that miR-200 family members require Sp1 to drive basal expression and to maintain an epithelial state.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , MicroARNs/biosíntesis , Elementos de Respuesta/fisiología , Factor de Transcripción Sp1/metabolismo , Animales , Línea Celular Tumoral , Perros , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Humanos , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Células de Riñón Canino Madin Darby , Ratones , MicroARNs/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factor de Transcripción Sp1/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
16.
Dev Growth Differ ; 57(2): 146-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25581786

RESUMEN

Neural crest cells (NCCs) are highly migratory progenitor cells that give rise to a vast array of differentiated cell types. One of their key derivatives is the autonomic nervous system (ANS) that is comprised in part from chromaffin cells of the adrenal medulla and organ of Zuckerkandl, the sympathetic chain and additional prevertebral ganglia such as the celiac ganglia, suprarenal ganglia and mesenteric ganglia. In this review we discuss recent advances toward our understanding of how the NCC precursors of the ANS migrate to their target regions, how they are instructed to differentiate into the correct cell types, and the morphogenetic signals controlling their development. Many of these processes remain enigmatic to developmental biologists worldwide. Taking advantage of lineage tracing mouse models one of our own aims is to address the morphogenetic events underpinning the formation of the ANS and to identify the molecular mechanisms that help to segregate a mixed population of NCCs into pathways specific for the sympathetic ganglia, sensory ganglia or adrenal medulla.


Asunto(s)
Movimiento Celular/fisiología , Ganglios Simpáticos/embriología , Cresta Neural/embriología , Células-Madre Neurales/metabolismo , Cuerpos Paraaórticos/metabolismo , Animales , Ganglios Simpáticos/citología , Humanos , Ratones , Cresta Neural/citología , Células-Madre Neurales/citología , Cuerpos Paraaórticos/citología
17.
Dev Biol ; 383(2): 186-200, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24080509

RESUMEN

The integration of multiple morphogenic signalling pathways and transcription factor networks is essential to mediate neural crest (NC) cell induction, delamination, survival, stem-cell properties, fate choice and differentiation. Although the transcriptional control of NC development is well documented in mammals, the role of post-transcriptional modifications, and in particular ubiquitination, has not been explored. Here we report an essential role for the ubiquitin ligase Nedd4 in cranial NC cell development. Our analysis of Nedd4(-/-) embryos identified profound deficiency of cranial NC cells in the absence of structural defects in the neural tube. Nedd4 is expressed in migrating cranial NC cells and was found to positively regulate expression of the NC transcription factors Sox9, Sox10 and FoxD3. We found that in the absence of these factors, a subset of cranial NC cells undergo apoptosis. In accordance with a lack of cranial NC cells, Nedd4(-/-) embryos have deficiency of the trigeminal ganglia, NC derived bone and malformation of the craniofacial skeleton. Our analyses therefore uncover an essential role for Nedd4 in a subset of cranial NC cells and highlight E3 ubiquitin ligases as a likely point of convergence for multiple NC signalling pathways and transcription factor networks.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cara/embriología , Cresta Neural/citología , Células Madre/citología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Biomarcadores/metabolismo , Tipificación del Cuerpo , Proliferación Celular , Supervivencia Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/deficiencia , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Fenotipo , Rombencéfalo/citología , Rombencéfalo/embriología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
18.
Development ; 138(19): 4185-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852397

RESUMEN

Neuropilin 1 (NRP1) is a transmembrane glycoprotein that is essential for blood vessel development in vertebrates. Best known for its ability to bind members of the vascular endothelial growth factor (VEGF) and class 3 semaphorin families through its extracellular domain, it also has a highly conserved cytoplasmic domain, which terminates in a SEA motif that binds the PDZ protein synectin/GIPC1/NIP. Previous studies in zebrafish embryos and tissue culture models raised the possibility that the SEA motif of NRP1 is essential for angiogenesis. Here, we describe the generation of mice that express a form of NRP1 that lacks the cytoplasmic domain and, therefore, the SEA motif (Nrp1(cyto)(Δ)(/)(Δ) mice). Our analysis of pre- and perinatal vascular development revealed that vasculogenesis and angiogenesis proceed normally in these mutants, demonstrating that the membrane-anchored extracellular domain is sufficient for vessel growth. By contrast, the NRP1 cytoplasmic domain is required for normal arteriovenous patterning, because arteries and veins crossed each other at an abnormally high frequency in the Nrp1(cyto)(Δ)(/)(Δ) retina, as previously reported for mice with haploinsufficient expression of VEGF in neural progenitors. At crossing sites, the artery was positioned anteriorly to the vein, and both vessels were embedded in a shared collagen sleeve. In human eyes, similar arteriovenous crossings are risk factors for branch retinal vein occlusion (BRVO), an eye disease in which compression of the vein by the artery disrupts retinal blood flow, causing local tissue hypoxia and impairing vision. Nrp1(cyto)(Δ)(/)(Δ) mice may therefore provide a suitable genetic model to study the aetiology of BRVO.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neovascularización Patológica , Neuropilina-1/metabolismo , Arteria Retiniana/patología , Vena Retiniana/patología , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Colágeno/metabolismo , Citoplasma/metabolismo , Humanos , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Arteria Retiniana/embriología , Vena Retiniana/embriología , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Development ; 138(17): 3723-33, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828096

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons are neuroendocrine cells that are born in the nasal placode during embryonic development and migrate through the nose and forebrain to the hypothalamus, where they regulate reproduction. Many molecular pathways that guide their migration have been identified, but little is known about the factors that control the survival of the migrating GnRH neurons as they negotiate different environments. We previously reported that the class 3 semaphorin SEMA3A signals through its neuropilin receptors, NRP1 and NRP2, to organise the axons that guide migrating GnRH neurons from their birthplace into the brain. By combining analysis of genetically altered mice with in vitro models, we show here that the alternative neuropilin ligand VEGF164 promotes the survival of migrating GnRH neurons by co-activating the ERK and AKT signalling pathways through NRP1. We also demonstrate that survival signalling relies on neuronal, but not endothelial, NRP1 expression and that it occurs independently of KDR, the main VEGF receptor in blood vessels. Therefore, VEGF164 provides survival signals directly to developing GnRH neurons, independently of its role in blood vessels. Finally, we show that the VEGF164-mediated neuronal survival and SEMA3A-mediated axon guidance cooperate to ensure that migrating GnRH neurons reach the brain. Thus, the loss of both neuropilin ligands leads to an almost complete failure to establish the GnRH neuron system.


Asunto(s)
Vasos Sanguíneos/metabolismo , Supervivencia Celular/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuropilina-1/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Axones/metabolismo , Proliferación Celular , Supervivencia Celular/genética , Hormona Liberadora de Gonadotropina/genética , Ratones , Neuropilina-1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/genética
20.
Development ; 138(18): 3931-41, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862557

RESUMEN

During tissue morphogenesis and differentiation, cells must self-renew while contemporaneously generating daughters that contribute to the growing tissue. How tissues achieve this precise balance between proliferation and differentiation is, in most instances, poorly understood. This is in part due to the difficulties in dissociating the mechanisms that underlie tissue patterning from those that regulate proliferation. In the migrating posterior lateral line primordium (PLLP), proliferation is predominantly localised to the leading zone. As cells emerge from this zone, they periodically organise into rosettes that subsequently dissociate from the primordium and differentiate as neuromasts. Despite this reiterative loss of cells, the primordium maintains its size through regenerative cell proliferation until it reaches the tail. In this study, we identify a null mutation in the Wnt-pathway transcription factor Lef1 and show that its activity is required to maintain proliferation in the progenitor pool of cells that sustains the PLLP as it undergoes migration, morphogenesis and differentiation. In absence of Lef1, the leading zone becomes depleted of cells during its migration leading to the collapse of the primordium into a couple of terminal neuromasts. We show that this behaviour resembles the process by which the PLLP normally ends its migration, suggesting that suppression of Wnt signalling is required for termination of neuromast production in the tail. Our data support a model in which Lef1 sustains proliferation of leading zone progenitors, maintaining the primordium size and defining neuromast deposition rate.


Asunto(s)
Proliferación Celular , Homeostasis/genética , Sistema de la Línea Lateral/embriología , Factores de Transcripción/fisiología , Proteínas Wnt/fisiología , Proteínas de Pez Cebra/fisiología , beta Catenina/fisiología , Aletas de Animales/embriología , Aletas de Animales/crecimiento & desarrollo , Aletas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Embrión no Mamífero , Homeostasis/fisiología , Sistema de la Línea Lateral/metabolismo , Masculino , Morfogénesis/genética , Morfogénesis/fisiología , Mutación/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA