Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(5): 783-791, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34523676

RESUMEN

Observational evidence links higher blood levels of copper with higher risk of cardiovascular diseases. However, whether those associations reflect causal links or can be attributed to confounding is still not fully clear. We investigated causal effects of copper on the risk of cardiometabolic endpoints (stroke, coronary artery disease [CAD] and type 2 diabetes) and cardiometabolic risk factors in two-sample Mendelian randomization (MR) studies. The selection of genetic instruments for blood copper levels relied on meta-analysis of genome-wide association studies in three independent studies (European Prospective Investigation into Cancer and Nutrition-Potsdam study, Prospective investigation of the Vasculature in Uppsala Seniors study, Queensland Institute of Medical Research studies). For the selected instruments, outcome associations were drawn from large public genetic consortia on the respective disease endpoints (MEGASTROKE, Cardiogram, DIAGRAM) and cardiometabolic risk factors. MR results indicate an inverse association for genetically higher copper levels with risk of CAD (odds ratio [95% confidence interval] = 0.92 [0.86-0.99], P = 0.022) and systolic blood pressure (beta [standard error (SE)] = -0.238 [0.121]; P = 0.049). Multivariable MR incorporating copper and systolic blood pressure into one model suggested systolic blood pressure as mediating factor between copper and CAD risk. In contrast to previous observational evidence establishing higher blood copper levels as risk-increasing factor for cardiometabolic diseases, this study suggests that higher levels of genetically predicted copper might play a protective role for the development of CAD and systolic blood pressure.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Enfermedades Cardiovasculares/genética , Cobre , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Factores de Riesgo
2.
Hum Mol Genet ; 31(13): 2207-2222, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35134179

RESUMEN

Manganese (Mn) is an essential mineral, but excess exposure can cause dopaminergic neurotoxicity. Restless legs syndrome (RLS) is a common neurological disorder, but the etiology and pathology remain largely unknown. The purpose of this study was to identify the role of Mn in the regulation of an RLS genetic risk factor BTBD9, characterize the function of BTBD9 in Mn-induced oxidative stress and dopaminergic neuronal dysfunction. We found that human subjects with high blood Mn levels were associated with decreased BTBD9 mRNA levels, when compared with subjects with low blood Mn levels. In A549 cells, Mn exposure decreased BTBD9 protein levels. In Caenorhabditis elegans, loss of hpo-9 (BTBD9 homolog) resulted in more susceptibility to Mn-induced oxidative stress and mitochondrial dysfunction, as well as decreased dopamine levels and alternations of dopaminergic neuronal morphology and behavior. Overexpression of hpo-9 in mutant animals restored these defects and the protection was eliminated by mutation of the forkhead box O (FOXO). In addition, expression of hpo-9 upregulated FOXO protein levels and decreased protein kinase B levels. These results suggest that elevated Mn exposure might be an environmental risk factor for RLS. Furthermore, BTBD9 functions to alleviate Mn-induced oxidative stress and neurotoxicity via regulation of insulin/insulin-like growth factor signaling pathway.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Síndromes de Neurotoxicidad , Síndrome de las Piernas Inquietas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Manganeso/toxicidad , Síndromes de Neurotoxicidad/genética , Estrés Oxidativo/genética , Síndrome de las Piernas Inquietas/genética , Síndrome de las Piernas Inquietas/metabolismo , Transducción de Señal
3.
Anal Bioanal Chem ; 416(20): 4591-4604, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960940

RESUMEN

From organs to subcellular organelles, trace element (TE) homeostasis is fundamental for many physiological processes. While often overlooked in early stages, manifested TE disbalance can have severe health consequences, particularly in the context of aging or pathological conditions. Monitoring TE concentrations at the mitochondrial level could identify organelle-specific imbalances, contributing to targeted diagnostics and a healthier aging process. However, mitochondria isolation from frozen tissue is challenging, as it poses the risk of TE losses from the organelles due to cryodamage, but would significantly ease routine laboratory work. To address this, a novel method to isolate an enriched mitochondria fraction (EMF) from frozen tissue was adapted from already established protocols. Validation of manganese (Mn), iron (Fe), and copper (Cu) quantification via inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) showed sufficiently low quantification limits for EMF TE analysis. Successful mitochondrial enrichment from frozen liver samples was confirmed via immunoblots and transmission electron microscopy (TEM) revealed sufficient structural integrity of the EMFs. No significant differences in EMF TEs between frozen and fresh tissue were evident for Mn and Cu and only slight decreases in EMF Fe. Consequently, EMF TEs were highly comparable for isolates from both tissue states. In application, this method effectively detected dietary differences in EMF Fe of a murine feeding study and identified the disease status in a Wilson disease rat model based on drastically increased EMF Cu. In summary, the present method is suitable for future applications, facilitating sample storage and high-throughput analyses of mitochondrial TEs.


Asunto(s)
Hígado , Espectrometría de Masas en Tándem , Oligoelementos , Animales , Hígado/química , Hígado/metabolismo , Oligoelementos/análisis , Ratones , Espectrometría de Masas en Tándem/métodos , Mitocondrias Hepáticas/metabolismo , Congelación , Manganeso/análisis , Ratones Endogámicos C57BL , Masculino , Cobre/análisis , Cobre/metabolismo , Hierro/análisis , Hierro/metabolismo
4.
Anal Bioanal Chem ; 415(24): 5925-5938, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37606646

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants. Studying the bioaccumulation in mammalian tissues requires a considerable effort for the PFAS extraction from complex biological matrices. The aim of the current work was to select and optimize the most efficient among common extraction strategies for eleven perfluoroalkyl acids (PFAA). Primary extractions from wild boar tissues (liver, kidney, and lung) were performed with methanol at neutral, acidic, or alkaline conditions, or with methyl-tert-butyl ether (MTBE) after ion-pairing with tetrabutylammonium (TBA) ions. A second purification step was chosen after comparing different solid-phase extraction (SPE) cartridges (Oasis WAX, ENVI-Carb, HybridSPE Phospholipid) and various combinations thereof or dispersive SPE with C18 and ENVI-Carb material. The best extraction efficiencies of the liquid PFAA extraction from tissue homogenates were achieved with methanol alone (recoveries from liver 86.6-114.4%). Further purification of the methanolic extracts using dispersive SPE or Oasis WAX columns decreased recoveries of most PFAA, whereas using pairs of two SPE columns connected in series proved to be more efficient albeit laborious. Highest recoveries for ten out of eleven PFAA were achieved using ENVI-Carb columns (80.3-110.6%). In summary, the simplest extraction methods using methanol and ENVI-Carb columns were also the most efficient. The technique was validated and applied in a proof of principle analysis in human tissue samples.


Asunto(s)
Fluorocarburos , Metanol , Animales , Humanos , Extracción en Fase Sólida/métodos , Hígado/química , Mamíferos , Fluorocarburos/análisis
5.
Arch Toxicol ; 97(9): 2303-2328, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37402810

RESUMEN

Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.


Asunto(s)
Daño del ADN , Mutágenos , Mutágenos/toxicidad , Mutágenos/análisis , ADN , Medición de Riesgo , Pruebas de Mutagenicidad/métodos
6.
Mar Drugs ; 21(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37367680

RESUMEN

Microalgae have enormous potential for human nutrition, yet the European Commission has authorized the consumption of only eleven species. Strains of fifteen rarely researched microalgae from two kingdoms were screened regarding their nutritional profile and value for human health in two cultivation phases. Contents of protein, fiber, lipids, fatty acids, minerals, trace elements and heavy metals were determined. In the growth phase, microalgae accumulated more arginine, histidine, ornithine, pure and crude protein, Mg, Mn, Fe and Zn and less Ni, Mo and I2 compared to the stationary phase. Higher contents of total fat, C14:0, C14:1n5, C16:1n7, C20:4n6, C20:5n3 and also As were observed in microalgae from the chromista kingdom in comparison to microalgae from the plantae kingdom (p < 0.05). Conversely, the latter had higher contents of C20:0, C20:1n9 and C18:3n3 as well as Ca and Pb (p < 0.05). More precisely, Chrysotila carterae appeared to have great potential for human nutrition because of its high nutrient contents such as fibers, carotenoids, C20:6n3, Mg, Ca, Mn, Fe, Se, Zn, Ni, Mo and I2. In summary, microalgae may contribute to a large variety of nutrients, yet the contents differ between kingdoms, cultivation phases and also species.


Asunto(s)
Haptophyta , Microalgas , Oligoelementos , Humanos , Micronutrientes , Microalgas/metabolismo , Ácidos Grasos/metabolismo , Haptophyta/metabolismo
7.
Molecules ; 28(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513246

RESUMEN

Neurotransmitters like dopamine (DA), serotonin (SRT), γ-aminobutyric acid (GABA) and acetylcholine (ACh) are messenger molecules that play a pivotal role in transmitting excitation between neurons across chemical synapses, thus enabling complex processes in the central nervous system (CNS). Balance in neurotransmitter homeostasis is essential, and altered neurotransmitter levels are associated with various neurological disorders, e.g., loss of dopaminergic neurons (Parkinson's disease) or altered ACh synthesis (Alzheimer's disease). Therefore, it is crucial to possess adequate tools to assess precise neurotransmitter levels, and to apply targeted therapies. An established in vivo model to study neurotoxicity is the model organism Caenorhabditis elegans (C. elegans), as its neurons have been well characterized and functionally are analogous to mammals. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method including a sample preparation assuring neurotransmitter stability, which allows a simultaneous neurotransmitter quantification of DA, SRT, GABA and ACh in C. elegans, but can easily be applied to other matrices. LC-MS/MS combined with isotope-labeled standards is the tool of choice, due to its otherwise unattainable sensitivity and specificity. Using C. elegans together with our analytically validated and verified method provides a powerful tool to evaluate mechanisms of neurotoxicity, and furthermore to identify possible therapeutic approaches.


Asunto(s)
Caenorhabditis elegans , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Dopamina/análisis , Acetilcolina , Neurotransmisores/química , Ácido gamma-Aminobutírico , Cromatografía Líquida de Alta Presión/métodos , Mamíferos
8.
Environ Toxicol ; 37(9): 2167-2177, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35596948

RESUMEN

Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions.


Asunto(s)
Encéfalo , Proteínas HSP70 de Choque Térmico , Manganeso , Factor 2 Relacionado con NF-E2 , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Manganeso/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas , Factores Sexuales
9.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328723

RESUMEN

Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes.


Asunto(s)
Manganeso , Trofoblastos , Transporte Biológico , Femenino , Humanos , Hierro/metabolismo , Manganeso/metabolismo , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
10.
Anal Bioanal Chem ; 413(11): 3041-3054, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33713146

RESUMEN

Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (-85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide.


Asunto(s)
Alcaloides/análisis , Cromatografía Liquida/métodos , Grano Comestible/química , Contaminación de Alimentos/análisis , Micotoxinas/análisis , Plaguicidas/análisis , Reguladores del Crecimiento de las Plantas/análisis , Espectrometría de Masas en Tándem/métodos , Tropanos/análisis , Reproducibilidad de los Resultados
11.
Eur J Nutr ; 60(6): 3267-3278, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33590281

RESUMEN

PURPOSE: We aimed to examine the prospective association between manganese, iron, copper, zinc, iodine, selenium, selenoprotein P, free zinc, and their interplay, with incident type 2 diabetes (T2D), cardiovascular disease (CVD) and colorectal cancer (CRC). METHODS: Serum trace element (TE) concentrations were measured in a case-cohort study embedded within the EPIC-Potsdam cohort, consisting of a random sub-cohort (n = 2500) and incident cases of T2D (n = 705), CVD (n = 414), and CRC (n = 219). TE patterns were investigated using principal component analysis. Cox proportional hazard models were fitted to examine the association between TEs with T2D, CVD and CRC incidence. RESULTS: Higher manganese, zinc, iodine and selenium were associated with an increased risk of developing T2D (HR Q5 vs Q1: 1.56, 1.09-2.22; HR per SD, 95% CI 1.18, 1.05-1.33; 1.09, 1.01-1.17; 1.19, 1.06-1.34, respectively). Regarding CVD, manganese, copper and copper-to-zinc ratio were associated with an increased risk (HR per SD, 95% CI 1.13, 1.00-1.29; 1.22, 1.02-1.44; 1.18, 1.02-1.37, respectively). The opposite was observed for higher selenium-to-copper ratio (HR Q5 vs Q1, 95% CI 0.60, 0.39-0.93). Higher copper and zinc were associated with increasing risk of developing CRC (HR per SD, 95% CI 1.29, 1.05-1.59 and 1.14, 1.00-1.30, respectively). Selenium, selenoprotein P and selenium-to-copper-ratio were associated to decreased risk (HR per SD, 95% CI 0.82, 0.69-0.98; 0.81, 0.72-0.93; 0.77, 0.65-0.92, respectively). Two TE patterns were identified: manganese-iron-zinc and copper-iodine-selenium. CONCLUSION: Different TEs were associated with the risk of developing T2D, CVD and CRC. The contrasting associations found for selenium with T2D and CRC point towards differential disease-related pathways.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Selenio , Oligoelementos , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Neoplasias Colorrectales/epidemiología , Cobre , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Incidencia , Estudios Prospectivos
12.
Arch Toxicol ; 95(10): 3417-3424, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34458933

RESUMEN

The identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, and feasible for high-throughput genotoxicity testing, and especially preliminary screening.


Asunto(s)
Bleomicina/toxicidad , Inestabilidad Genómica , Pruebas de Mutagenicidad/métodos , terc-Butilhidroperóxido/toxicidad , Animales , Caenorhabditis elegans , Daño del ADN/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Mutágenos/toxicidad , Reproducibilidad de los Resultados
13.
Arch Toxicol ; 95(7): 2507-2522, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33978766

RESUMEN

The consumption of red meat is associated with an increased risk for colorectal cancer (CRC). Multiple lines of evidence suggest that heme iron as abundant constituent of red meat is responsible for its carcinogenic potential. However, the underlying mechanisms are not fully understood and particularly the role of intestinal inflammation has not been investigated. To address this important issue, we analyzed the impact of heme iron (0.25 µmol/g diet) on the intestinal microbiota, gut inflammation and colorectal tumor formation in mice. An iron-balanced diet with ferric citrate (0.25 µmol/g diet) was used as reference. 16S rRNA sequencing revealed that dietary heme reduced α-diversity and caused a persistent intestinal dysbiosis, with a continuous increase in gram-negative Proteobacteria. This was linked to chronic gut inflammation and hyperproliferation of the intestinal epithelium as attested by mini-endoscopy, histopathology and immunohistochemistry. Dietary heme triggered the infiltration of myeloid cells into colorectal mucosa with an increased level of COX-2 positive cells. Furthermore, flow cytometry-based phenotyping demonstrated an increased number of T cells and B cells in the lamina propria following heme intake, while γδ-T cells were reduced in the intraepithelial compartment. Dietary heme iron catalyzed formation of fecal N-nitroso compounds and was genotoxic in intestinal epithelial cells, yet suppressed intestinal apoptosis as evidenced by confocal microscopy and western blot analysis. Finally, a chemically induced CRC mouse model showed persistent intestinal dysbiosis, chronic gut inflammation and increased colorectal tumorigenesis following heme iron intake. Altogether, this study unveiled intestinal inflammation as important driver in heme iron-associated colorectal carcinogenesis.


Asunto(s)
Neoplasias Colorrectales , Hemo , Animales , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Dieta , Hemo/toxicidad , Inflamación/patología , Mucosa Intestinal/patología , Hierro , Ratones , ARN Ribosómico 16S
14.
Mar Drugs ; 19(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071995

RESUMEN

The nutrient composition of 15 commercially available microalgae powders of Arthrospira platensis, Chlorella pyrenoidosa and vulgaris, Dunaliella salina, Haematococcus pluvialis, Tetraselmis chuii, and Aphanizomenon flos-aquae was analyzed. The Dunaliella salina powders were characterized by a high content of carbohydrates, saturated fatty acids (SFAs), omega-6-polyunsaturated fatty acids (n6-PUFAs), heavy metals, and α-tocopherol, whereas the protein amounts, essential amino acids (EAAs), omega-3-PUFAs (n3-PUFAs), vitamins, and minerals were low. In the powder of Haematococcus pluvialis, ten times higher amounts of carotenoids compared to all other analyzed powders were determined, yet it was low in vitamins D and E, protein, and EAAs, and the n6/n3-PUFAs ratio was comparably high. Vitamin B12, quantified as cobalamin, was below 0.02 mg/100 g dry weight (d.w.) in all studied powders. Based on our analysis, microalgae such as Aphanizomenon and Chlorella may contribute to an adequate intake of critical nutrients such as protein with a high content of EAAs, dietary fibers, n3-PUFAs, Ca, Fe, Mg, and Zn, as well as vitamin D and E. Yet, the nutritional value of Aphanizomenon flos-aquae was slightly decreased by high contents of SFAs. The present data show that microalgae are rich in valuable nutrients, but the macro- and micronutrient profiles differ strongly between and within species.


Asunto(s)
Suplementos Dietéticos/análisis , Microalgas/química , Nutrientes/análisis , Valor Nutritivo , Técnicas de Química Analítica , Humanos , Micronutrientes/análisis , Polvos
15.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34681565

RESUMEN

Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Daño del ADN , Proteínas Activadoras de GTPasa/genética , Manganeso/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Reparación del ADN , Relación Dosis-Respuesta a Droga , Modelos Animales , Mortalidad , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/genética , Factores de Tiempo
16.
Anal Bioanal Chem ; 412(13): 3141-3152, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172328

RESUMEN

Moxidectin (MOX) is a widely used anthelmintic drug for the treatment of internal and external parasites in food-producing and companion animals. Transformation products (TPs) of MOX, formed through metabolic degradation or acid hydrolysis, may pose a potential environmental risk, but only few were identified so far. In this study, we therefore systematically characterized electro- and photochemically generated MOX TPs using high-resolution mass spectrometry (HRMS). Oxidative electrochemical (EC) TPs were generated in an electrochemical reactor and photochemical (PC) TPs by irradiation with UV-C light. Subsequent HRMS measurements were performed to identify accurate masses and deduce occurring modification reactions of derived TPs in a suspected target analysis. In total, 26 EC TPs and 59 PC TPs were found. The main modification reactions were hydroxylation, (de-)hydration, and derivative formation with methanol for EC experiments and isomeric changes, (de-)hydration, and changes at the methoxime moiety for PC experiments. In addition, several combinations of different modification reactions were identified. For 17 TPs, we could predict chemical structures through interpretation of acquired MS/MS data. Most modifications could be linked to two specific regions of MOX. Some previously described metabolic reactions like hydroxylation or O-demethylation were confirmed in our EC and PC experiments as reaction type, but the corresponding TPs were not identical to known metabolites or degradation products. The obtained knowledge regarding novel TPs and reactions will aid to elucidate the degradation pathway of MOX which is currently unknown. Graphical abstract.


Asunto(s)
Antihelmínticos/metabolismo , Técnicas Electroquímicas/métodos , Macrólidos/metabolismo , Procesos Fotoquímicos , Espectrometría de Masas en Tándem/métodos , Antihelmínticos/química , Macrólidos/química , Estructura Molecular
17.
Eur J Nutr ; 59(7): 3045-3058, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31786641

RESUMEN

PURPOSE: We aimed to evaluate age-dependent changes of six trace elements (TE) [manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), iodine (I), and selenium (Se)] over a 20-year period. METHODS: TE concentrations were determined using repeated serum samples taken at baseline and after 20 years of follow-up from 219 healthy participants of the EPIC-Potsdam study, using inductively coupled plasma tandem mass spectrometry. For each TE, absolute and relative differences were calculated between the two time points, as well as the proportion of individuals within normal reference ranges. Interdependence between age-related TE differences was investigated using principal component analysis (PCA). Relationships between selected factors (lifestyle, sociodemographic, anthropometric factors, and hypertension) and corresponding TE longitudinal variability were examined using multivariable linear regression models. RESULTS: Median age of our study sample was 58.32 years (4.42) at baseline and 40% were females. Median Mn, Zn, Se concentrations and Se to Cu ratio significantly decreased during aging while median Fe, Cu, I concentrations and Cu to Zn ratio significantly increased. A substantial percentage of the participants, at both time points, had Zn concentrations below the reference range. The first PCA-extracted factor reflected the correlated decline in both Mn and Zn over time while the second factor reflected the observed (on average) increase in both Cu and I over time. Overall, none of the investigated factors were strong determinants of TE longitudinal variability, except possibly dietary supplement use, and alcohol use for Fe. CONCLUSIONS: In conclusion, in this population-based study of healthy elderly, decrease in Mn, Zn, and Se concentrations and increase in Fe, Cu, and I concentrations were observed over 20 years of follow-up. Further research is required to investigate dietary determinants and markers of TE status as well as the relationships between TE profiles and the risk of age-related diseases.


Asunto(s)
Selenio , Oligoelementos , Anciano , Envejecimiento , Estudios de Cohortes , Cobre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Zinc
18.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231018

RESUMEN

As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer's disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.


Asunto(s)
Cobre/análisis , Enfermedades Neurodegenerativas/patología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Cobre/metabolismo , Humanos , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Microscopía Electrónica de Transmisión/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Imagen Óptica/métodos , Espectrometría por Rayos X/métodos
19.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917005

RESUMEN

Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.


Asunto(s)
Envejecimiento/metabolismo , Daño del ADN , Reparación del ADN , Oligonucleótidos/aislamiento & purificación , Poli ADP Ribosilación , Animales , Electroforesis en Gel de Gradiente Desnaturalizante , Femenino , Células Hep G2 , Humanos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Caracteres Sexuales
20.
Arch Toxicol ; 93(3): 743-751, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30659322

RESUMEN

Boron-associated shifts in sex ratios at birth were suggested earlier and attributed to a decrease in Y- vs. X-bearing sperm cells. As the matter is pivotal in the discussion of reproductive toxicity of boron/borates, re-investigation in a highly borate-exposed population was required. In the present study, 304 male workers in Bandirma and Bigadic (Turkey) with different degrees of occupational and environmental exposure to boron were investigated. Boron was quantified in blood, urine and semen, and the persons were allocated to exposure groups along B blood levels. In the highest ("extreme") exposure group (n = 69), calculated mean daily boron exposures, semen boron and blood boron concentrations were 44.91 ± 18.32 mg B/day, 1643.23 ± 965.44 ng B/g semen and 553.83 ± 149.52 ng B/g blood, respectively. Overall, an association between boron exposure and Y:X sperm ratios in semen was not statistically significant (p > 0.05). Also, the mean Y:X sperm ratios in semen samples of workers allocated to the different exposure groups were statistically not different in pairwise comparisons (p > 0.05). Additionally, a boron-associated shift in sex ratio at birth towards female offspring was not visible. In essence, the present results do not support an association between boron exposure and decreased Y:X sperm ratio in males, even under extreme boron exposure conditions.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Boro/toxicidad , Exposición Profesional/análisis , Adulto , Cromosomas Humanos X , Cromosomas Humanos Y , Humanos , Masculino , Reproducción , Razón de Masculinidad , Espermatozoides/efectos de los fármacos , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA