Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Nano Lett ; 24(22): 6529-6537, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38789104

RESUMEN

Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 µA µm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω µm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.

2.
Small ; 19(27): e2205499, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37009999

RESUMEN

Selective electro-oxidation of aliphatic alcohols into value-added carboxylates at lower potentials than that of the oxygen evolution reaction (OER) is an environmentally and economically desirable anode reaction for clean energy storage and conversion technologies. However, it is challenging to achieve both high selectivity and high activity of the catalysts for the electro-oxidation of alcohols, such as the methanol oxidation reaction (MOR). Herein, a monolithic CuS@CuO/copper-foam electrode for the MOR with superior catalytic activity and almost 100% selectivity for formate is reported. In the core-shell CuS@CuO nanosheet arrays, the surface CuO directly catalyzes MOR, while the subsurface sulfide not only serves as an inhibitor to attenuate the oxidative power of the surface CuO to achieve selective oxidation of methanol to formate and prevent over-oxidation of formate to CO2 but also serves as an activator to form more surface O defects as active sites and enhances the methanol adsorption and charge transfer to achieve superior catalytic activity. CuS@CuO/copper-foam electrodes can be prepared on a large scale by electro-oxidation of copper-foam at ambient conditions and can be readily utilized in clean energy technologies.

3.
Nat Mater ; 21(7): 740-747, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35058609

RESUMEN

The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.

4.
Phys Chem Chem Phys ; 25(19): 13533-13541, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37132639

RESUMEN

Owing to their use in the optoelectronic industry, we investigate whether ZnSe and ZnTe can be utilised as tunnel barrier materials in magnetic spin valves. We perform ab initio electronic structure and linear response transport calculations based on self-interaction-corrected density functional theory for both Fe/ZnSe/Fe and Fe/ZnTe/Fe junctions. In the Fe/ZnSe/Fe junction the transport is tunneling-like and a symmetry-filtering mechanism is at play, implying that only the majority spin electrons with Δ1 symmetry are transmitted with large probability, resulting in a potentially large tunneling magnetoresistance (TMR) ratio. As such, the transport characteristics are similar to those of the Fe/MgO/Fe junction, although the TMR ratio is lower for tunnel barriers of similar thickness due to the smaller bandgap of ZnSe as compared to that of MgO. In the Fe/ZnTe/Fe junction the Fermi level is pinned at the bottom of the conduction band of ZnTe and only a giant magnetoresistance effect is found. Our results provide evidence that chalcogenide-based tunnel barriers can be utilised in spintronics devices.

5.
Angew Chem Int Ed Engl ; 62(17): e202301396, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36856567

RESUMEN

Carbonaceous materials are promising anodes for practical potassium-ion batteries, but fail to meet the requirements for durability and high capacities at low potentials. Herein, we constructed a durable carbon anode for high-energy-density K-ion full cells by a preferential pyrolysis strategy. Utilizing S and N volatilization from a π-π stacked supermolecule, the preferential pyrolysis process introduces low-potential active sites of sp2 hybridized carbon and carbon vacancies, endowing a low-potential "vacancy-adsorption/intercalation" mechanism. The as-prepared carbon anode exhibits a high capacity of 384.2 mAh g-1 (90 % capacity locates below 1 V vs. K/K+ ), which contributes to a high energy density of 163 Wh kg-1 of K-ion full battery. Moreover, abundant vacancies of carbon alleviate volume variation, boosting the cycling stability over 14 000 cycles (8400 h). Our work provides a new synthesis approach for durable carbon anodes of K-ion full cells with high energy densities.

6.
Chemphyschem ; 23(10): e202200041, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35286751

RESUMEN

Monolayer, bilayer, and bulk BSi are studied to explore their application potential as anode materials of Li-ion batteries. Structural stability and metallicity are obtained in each case. The Li storage capacities of monolayer and bilayer BSi are 1378 and 689 mAh g-1 , respectively, with average open circuit voltages of 1.30 and 0.47 V as well as Li diffusion barriers of 0.48 and 0.27 eV. Bulk BSi realizes a layered structure in the presence of a small amount of Li and its Li diffusion barrier of 0.48 eV is identical to that of graphite and lower than that of bulk Si (0.58 eV). The Li storage capacity of bulk BSi is found to be 689 mAh g-1 , i. e., much higher than that of graphite (372 mAh g-1 ). The volume expansion turns out to be 33 % and the chemical bonds remain intact at full lithiation, outperforming the 72 % volume expansion of bulk Si at the same capacity and thus pointing to excellent cyclability.

7.
Phys Chem Chem Phys ; 24(11): 7045-7049, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35258045

RESUMEN

We predict three Ga2O3 polymorphs with P21/c or Pnma symmetry. The formation energies of P21/c Ga2O3, Pnma-I Ga2O3, and Pnma-II Ga2O3 are 57 meV per atom, 51 meV per atom, and 23 meV per atom higher than that of ß-Ga2O3, respectively. All the polymorphs are shown to be dynamically and mechanically stable. P21/c Ga2O3 is a quasi-direct wide band gap semiconductor (3.83 eV), while Pnma-I Ga2O3 and Pnma-II Ga2O3 are direct wide band gap semiconductors (3.60 eV and 3.70 eV, respectively). Simulated X-ray diffraction patterns are provided for experimental confirmation of the predicted structures. The polymorphs turn out to provide low electron effective masses, which is of great benefit to high-power electronic devices.

8.
Nano Lett ; 21(16): 6807-6812, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34343007

RESUMEN

We discover that large uniaxial magnetocrystalline anisotropy driven by the simultaneous presence of spin-orbit coupling and structural distortions is the origin of the giant coercivity observed experimentally in the double perovskite Lu2NiIrO6. The magnetic easy axis turns out to be the monoclinic b-axis with an anisotropy constant as high as 1.9 × 108 erg/cm3. The predicted coercive field of 50 kOe and Curie temperature of 220 K agree with the experimentally observed values and point to potential of Lu2NiIrO6 in spintronics applications. We find that the spin-orbit coupling induces a rare Ir4+ Jeff = 1/2 Mott insulating state, suggesting that Lu2NiIrO6 provides a playground to study the interplay between spin-orbit coupling and electronic correlations in a 5d transition metal oxide. The spin-orbit coupling also results in a direct band gap with the valence and conduction states localized on different transition metal sublattices, i.e., efficient electron-hole separation upon photoexcitation and low electron-hole recombination.

9.
Angew Chem Int Ed Engl ; 60(3): 1355-1363, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33017482

RESUMEN

Organic anodes have attracted increasing attention for alkali metal ion batteries. In this work, we discovered that cyclized polyacrylonitrile (cPAN) can serve as an excellent anode for alkali metal ion batteries. Upon activation cycling, as an anode of lithium-ion battery, cPAN exhibits a reversible capacity as high as 1238 mAh g-1 under a current density of 50 mA g-1 . Based on electrochemical experiments and first-principles calculations, it is demonstrated that the hexagonal carbon ring, piperidine ring, and pyridine nitrogen in ladder cPAN are the main active sites for lithium-ion storage. cPAN displays a unique potential-dependent solid electrolyte interphase formation from 0.1 to 0.01 V vs. Li/Li+ . It also displays decent performance as an anode in SIBs and PIBs.

10.
Phys Rev Lett ; 124(2): 026402, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-32004057

RESUMEN

We resolve a fundamental issue associated with the conventional Kohn-Sham formulation of real-time time-dependent density functional theory. We show that unphysical multielectron excitations, generated during time propagation of the Kohn-Sham equations due to fixation of the total number of Kohn-Sham orbitals and their occupations, result in incorrect electron density and, therefore, wrong predictions of physical properties. A new formulation is proposed in that the number of Kohn-Sham orbitals and their occupations are updated on the fly, the unphysical multielectron excitations are removed, and the correct electron density is determined. The correctness of the new formulation is demonstrated by simulations of Rabi oscillation, as analytical results are available for comparison in the case of noninteracting electrons.

11.
Phys Chem Chem Phys ; 22(27): 15365-15372, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32597910

RESUMEN

To understand the mechanism of wettability alteration of calcite, a typical mineral in oil reservoirs, the interactions of deionized water and brine (with different compositions) with the calcite {101[combining macron]4} surface are investigated using a combination of molecular dynamics and first-principles simulations. We show that two distinct water adsorption layers are formed through hydrogen bonding and electrostatic interactions with the calcite {101[combining macron]4} surface as well as hydrogen bonding between the water molecules. These highly ordered water layers resist penetration of large stable Mg2+ and Ca2+ hydrates. As Na+ and Cl- hydrates are less stable, Na+ and Cl- ions may penetrate the ordered water layers to interact with the calcite {101[combining macron]4} surface. In contact with this surface, Na+ interacts significantly with water molecules, which increases the water-calcite interaction (wettability of calcite), in contrast to Cl-. We propose that formation of Na+ hydrates plays an important role in the wettability alteration of the calcite {101[combining macron]4} surface.

12.
Small ; 15(16): e1900462, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30895732

RESUMEN

2D organic-inorganic hybrid perovskites (OIHPs) may resolve the stability problem of bulk OIHPs. First-principles calculations are employed to investigate the mechanism behind their favorable material properties. Two processes are identified to play a critical role: First, the 2D structure supports additional distortions that enhance the intrinsic structural stability. Second, the surface terminations of 2D OIHPs suppress degradation effects due to humidity. Having uncovered the stabilization mechanism, 2D OIHPs are designed with optimal stability and favorable electronic properties.

13.
Nanotechnology ; 30(8): 085709, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30524043

RESUMEN

Small-sized nanoparticles are widely used in applications such as catalysis, nanoelectronics, and hydrogen storage. However, the small size causes a common problem: agglomeration on the support template. One solution is to use templates that limit the mobility of the nanoparticles. Graphene nanomeshes (GNMs) are two dimensional porous structures with controllably passivated pores. In this work, we employ first principles calculations to investigate the potential for using GNMs as support templates for Ni clusters and, at the same time, study their magnetic and hydrogen storage properties. We consider two Ni clusters (Ni6 and Ni13) and two GNMs (O-terminated and N-terminated), comparing our results to those of isolated Ni clusters and those of Ni clusters on graphene. High stability of the Ni clusters is found on the N-GNM in contrast to the O-GNM. We quantify the hydrogen storage capacity by calculating the adsorption energy for multiple H2 molecules. The values on Ni x /N-GNM are significantly reduced as compared to the corresponding isolated Ni x clusters, but a high hydrogen storage capacity is maintained. The fact that Ni x /N-GNM hosts spin polarization is interesting for spintronic applications.

14.
Phys Chem Chem Phys ; 21(2): 662-673, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30542692

RESUMEN

The electronic and thermoelectric properties of four ternary chalcogenides with space group Pnma, namely, Cu(Sb,Bi)(S,Se)2, are investigated up to 8 GPa hydrostatic pressure using density functional theory combined with semiclassical Boltzmann theory. The effects of the van der Waals interaction are included in all calculations, since these compounds have layered structures. They all have indirect band gaps that decrease monotonically with increasing hydrostatic pressure except for CuBiS2, for which an indirect-indirect band gap transition occurs around 3 GPa, leading to conduction band convergence with a concomitant 20% increase in the Seebeck coefficient. The enhanced Seebeck coefficient results from a complex interplay between multivalley and multiband effects as well as changes of the band effective masses, driven by hydrostatic pressure. Our results suggest that ongoing developments in high-pressure science may open new opportunities for the discovery of efficient thermoelectric materials.

15.
Phys Chem Chem Phys ; 20(16): 11296-11305, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29637972

RESUMEN

We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of the fullerene/solvent interaction and the level of molecular association within the solvent itself.

16.
Nano Lett ; 17(11): 6747-6751, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29039674

RESUMEN

Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga-Luttinger liquid parameter and density-density interaction are extrapolated from the first-principles excitation energies. We show that the density-density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga-Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.

17.
Nano Lett ; 17(2): 1302-1311, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28098459

RESUMEN

We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g-1 were observed, respectively, at 0.1 A g-1. In addition, an impressive reversible capacity of 665 mAh g-1 after 100 cycles at 0.1 A g-1 and 452 mAh g-1 after 1000 cycles at a high current density of 1.0 A g-1 was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10-20 atomic layers, only a reversible capacity of 389 mAh g-1 could be obtained after 100 cycles at 0.1 A g-1. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance.

18.
Opt Express ; 25(6): 5891-5908, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28381060

RESUMEN

A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. "Quantum correction" introduces an auxiliary tunnel to support the current path that is generated by electrons tunneled between the nanostructures. The permittivity of the auxiliary tunnel and the nanostructures is obtained from density functional theory (DFT) computations. Electromagnetic field interactions on the combined structure (nanostructures plus auxiliary tunnel connecting them) are computed using a TD-SIE solver. Time domain samples of the permittivity and the Green function required by this solver are obtained from their frequency domain samples (generated from DFT computations) using a semi-analytical method. Accuracy and applicability of the resulting quantum-corrected solver scheme are demonstrated via numerical examples.

19.
Phys Chem Chem Phys ; 19(18): 11455-11459, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28425534

RESUMEN

In search for materials for intermediate temperature solid oxide fuel cells, (Pr/Gd)BaCo2O5.5 is investigated by first principles calculations. Antisite defects are considered as they may modify the electronic and O diffusion properties but are rarely studied in double perovskite oxides. Octahedrally coordinated Co atoms are shown to realize intermediate and high spin states for PrBaCo2O5.5 and GdBaCo2O5.5, respectively, while pyramidally coordinated Co atoms always have high spin. It turns out that O vacancy formation is significantly easier in PrBaCo2O5.5 than in GdBaCo2O5.5, the difference in formation energy being hardly modified by antisite defects. While pyramidally coordinated Co atoms are not affected, we show that the presence of antisite defects causes parts of the octahedrally coordinated Co atoms to switch from intermediate to high spin.

20.
Phys Chem Chem Phys ; 19(44): 30069-30077, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29098219

RESUMEN

We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA