Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
EMBO J ; 39(7): e103208, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32134527

RESUMEN

To achieve ultrafast neurotransmission, neurons assemble synapses with highly organized presynaptic and postsynaptic nanomachines that are aligned by synaptic adhesion molecules. How functional assembly of presynaptic active zones is controlled via trans-synaptic interactions remains unknown. Here, we conditionally deleted all three neurexin adhesion molecules from presynaptic neurons of the calyx of Held in the mouse auditory system, a model synapse that allows precise biophysical analyses of synaptic properties. The pan-neurexin deletion had no effect on synapse development or the basic release machinery, but dramatically impaired fast neurotransmitter release. The overall properties of presynaptic calcium ion channels appeared normal, as reflected by the similar characteristics of calcium currents recorded at the nerve terminals. However, the pan-neurexin deletion significantly impaired the tight coupling of calcium influx to exocytosis, thereby suppressing neurotransmitter release. Furthermore, the pan-neurexin deletion reduced the function of calcium-activated BK potassium channels, whose activation depends on their tight association with presynaptic calcium channels. Together, these results suggest that neurexins perform a major function at the calyx synapse in coupling presynaptic calcium channels to release sites.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas del Tejido Nervioso/genética , Sinapsis/metabolismo , Animales , Exocitosis , Eliminación de Gen , Ratones , Proteínas del Tejido Nervioso/metabolismo , Transmisión Sináptica
2.
EMBO J ; 37(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29967030

RESUMEN

The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+-triggered synaptic vesicle exocytosis. BK-channels are Ca2+-activated large-conductance K+-channels that require close proximity to Ca2+-channels for activation and control Ca2+-triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK-channels are recruited to presynaptic Ca2+-channels, however, is unknown. Here, we show that RBPs (for RIM-binding proteins), which are evolutionarily conserved active zone proteins containing SH3- and FN3-domains, directly bind to BK-channels. We find that RBPs interact with RIMs and Ca2+-channels via their SH3-domains, but to BK-channels via their FN3-domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK-currents and depleted BK-channels from active zones. Our data suggest that RBPs recruit BK-channels into a RIM-based macromolecular active zone complex that includes Ca2+-channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio-temporal coupling of Ca2+-influx to Ca2+-triggered neurotransmitter release in a presynaptic terminal.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Canales de Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Vesículas Sinápticas/genética , Dominios Homologos src
3.
Neural Plast ; 2017: 6468356, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367336

RESUMEN

The c-Jun N-terminal kinase (JNK) is part of a stress signalling pathway strongly activated by NMDA-stimulation and involved in synaptic plasticity. Many studies have been focused on the post-synaptic mechanism of JNK action, and less is known about JNK presynaptic localization and its physiological role at this site. Here we examined whether JNK is present at the presynaptic site and its activity after presynaptic NMDA receptors stimulation. By using N-SIM Structured Super Resolution Microscopy as well as biochemical approaches, we demonstrated that presynaptic fractions contained significant amount of JNK protein and its activated form. By means of modelling design, we found that JNK, via the JBD domain, acts as a physiological effector on T-SNARE proteins; then using biochemical approaches we demonstrated the interaction between Syntaxin-1-JNK, Syntaxin-2-JNK, and Snap25-JNK. In addition, taking advance of the specific JNK inhibitor peptide, D-JNKI1, we defined JNK action on the SNARE complex formation. Finally, electrophysiological recordings confirmed the role of JNK in the presynaptic modulation of vesicle release. These data suggest that JNK-dependent phosphorylation of T-SNARE proteins may have an important functional role in synaptic plasticity.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Terminales Presinápticos/enzimología , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas SNARE/metabolismo , Animales , Corteza Cerebral/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores , Femenino , Glicina/farmacología , Masculino , Ratones , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , N-Metilaspartato/farmacología , Sinaptosomas/metabolismo
4.
Neurobiol Dis ; 89: 101-11, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26721320

RESUMEN

Alzheimer disease (AD) is the most prevalent form of dementia. Loss of hippocampal synapses is the first neurodegenerative event in AD. Synaptic loss has been associated with the accumulation in the brain parenchyma of soluble oligomeric forms of amyloid ß peptide (Aß1-42wt). Clinical observations have shown that a mutation in the APP protein (A673V) causes an early onset AD-type dementia in homozygous carriers while heterozygous carriers are unaffected. This mutation leads to the formation of mutated Aß peptides (Aß1-42A2V) in homozygous patients, while in heterozygous subjects both Aß1-42wt and Aß1-42A2V are present. To better understand the impact of the A673V mutation in AD, we analyzed the synaptotoxic effect of oligomers formed by aggregation of different Aß peptides (Aß1-42wt or Aß1-42A2V) and the combination of the two Aß1-42MIX (Aß1-42wt and Aß1-42A2V) in an in vitro model of synaptic injury. We showed that Aß1-42A2V oligomers are more toxic than Aß1-42wt oligomers in hippocampal neurons, confirming the results previously obtained in cell lines. Furthermore, we reported that oligomers obtained by the combination of both wild type and mutated peptides (Aß1-42MIX) did not exert synaptic toxicity. We concluded that the combination of Aß1-42wt and Aß1-42A2V peptides hinders the toxicity of Aß1-42A2V and counteracts the manifestation of synaptopathy in vitro. Finally we took advantage of this finding to generate a cell-permeable peptide for clinical application, by fusing the first six residues of the Aß1-42A2V to the TAT cargo sequence (Aß1-6A2VTAT(D)). Noteworthy, the treatment with Aß1-6A2VTAT(D) confers neuroprotection against both in vitro and in vivo synaptopathy models. Therefore Aß1-6A2VTAT(D) may represent an innovative therapeutic tool to prevent synaptic degeneration in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/toxicidad , Hipocampo/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/toxicidad , Sinapsis/metabolismo , Péptidos beta-Amiloides/ultraestructura , Animales , Permeabilidad de la Membrana Celular , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/ultraestructura , Sinapsis/efectos de los fármacos
5.
J Biol Chem ; 288(11): 7857-7866, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23362282

RESUMEN

A hallmark of Alzheimer disease (AD) is the accumulation of the amyloid-ß (Aß) peptide in the brain. Considerable evidence suggests that soluble Aß oligomers are responsible for the synaptic dysfunction and cognitive deficit observed in AD. However, the mechanism by which these oligomers exert their neurotoxic effect remains unknown. Recently, it was reported that Aß oligomers bind to the cellular prion protein with high affinity. Here, we show that N1, the main physiological cleavage fragment of the cellular prion protein, is necessary and sufficient for binding early oligomeric intermediates during Aß polymerization into amyloid fibrils. The ability of N1 to bind Aß oligomers is influenced by positively charged residues in two sites (positions 23-31 and 95-105) and is dependent on the length of the sequence between them. Importantly, we also show that N1 strongly suppresses Aß oligomer toxicity in cultured murine hippocampal neurons, in a Caenorhabditis elegans-based assay, and in vivo in a mouse model of Aß-induced memory dysfunction. These data suggest that N1, or small peptides derived from it, could be potent inhibitors of Aß oligomer toxicity and represent an entirely new class of therapeutic agents for AD.


Asunto(s)
Péptidos beta-Amiloides/química , Priones/química , Enfermedad de Alzheimer/metabolismo , Proteínas Amiloidogénicas/química , Animales , Benzotiazoles , Caenorhabditis elegans/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie , Sinapsis/metabolismo , Tiazoles/química
6.
PLoS One ; 19(2): e0298645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319918

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0158295.].

7.
Proc Natl Acad Sci U S A ; 107(5): 2295-300, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133875

RESUMEN

Inability to form new memories is an early clinical sign of Alzheimer's disease (AD). There is ample evidence that the amyloid-beta (Abeta) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of Abeta are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of Abeta-mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic Abeta(1-42) oligomers impaired consolidation of the long-term recognition memory, whereas mature Abeta(1-42) fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-Abeta antibody. It has been suggested that the cellular prion protein (PrP(C)) mediates the impairment of synaptic plasticity induced by Abeta. We confirmed that Abeta(1-42) oligomers interact with PrP(C), with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that Abeta(1-42) oligomers are responsible for cognitive impairment in AD and that PrP(C) is not required.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Memoria/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteínas PrPC/metabolismo , Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/síntesis química , Péptidos beta-Amiloides/química , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Humanos , Inyecciones Intraventriculares , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Proteínas Priónicas , Priones/genética , Priones/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie
8.
Nat Commun ; 14(1): 4976, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591863

RESUMEN

Synaptic adhesion molecules (SAMs) shape the structural and functional properties of synapses and thereby control the information processing power of neural circuits. SAMs are broadly expressed in the brain, suggesting that they may instruct synapse formation and specification via a combinatorial logic. Here, we generate sextuple conditional knockout mice targeting all members of the two major families of presynaptic SAMs, Neurexins and leukocyte common antigen-related-type receptor phospho-tyrosine phosphatases (LAR-PTPRs), which together account for the majority of known trans-synaptic complexes. Using synapses formed by cerebellar Purkinje cells onto deep cerebellar nuclei as a model system, we confirm that Neurexins and LAR-PTPRs themselves are not essential for synapse assembly. The combinatorial deletion of both neurexins and LAR-PTPRs, however, decreases Purkinje-cell synapses on deep cerebellar nuclei, the major output pathway of cerebellar circuits. Consistent with this finding, combined but not separate deletions of neurexins and LAR-PTPRs impair motor behaviors. Thus, Neurexins and LAR-PTPRs are together required for the assembly of a functional cerebellar circuit.


Asunto(s)
Cerebelo , Células de Purkinje , Animales , Ratones , Encéfalo , Cognición , Ratones Noqueados , Fosfotirosina , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética
9.
J Biol Chem ; 286(51): 43871-43880, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22033930

RESUMEN

Alzheimer disease (AD) is characterized by cognitive impairment that starts with memory loss to end in dementia. Loss of synapses and synaptic dysfunction are closely associated with cognitive impairment in AD patients. Biochemical and pathological evidence suggests that soluble Aß oligomers correlate with cognitive impairment. Here, we used the TgCRND8 AD mouse model to investigate the role of JNK in long term memory deficits. TgCRND8 mice were chronically treated with the cell-penetrating c-Jun N-terminal kinase inhibitor peptide (D-JNKI1). D-JNKI1, preventing JNK action, completely rescued memory impairments (behavioral studies) as well as the long term potentiation deficits of TgCRND8 mice. Moreover, D-JNKI1 inhibited APP phosphorylation in Thr-668 and reduced the amyloidogenic cleavage of APP and Aß oligomers in brain parenchyma of treated mice. In conclusion, by regulating key pathogenic mechanisms of AD, JNK might hold promise as innovative therapeutic target.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Regulación Enzimológica de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Enfermedad de Alzheimer/genética , Animales , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Electrofisiología , Humanos , Aprendizaje por Laberinto , Trastornos de la Memoria/genética , Ratones , Modelos Biológicos , Péptidos/química , Transducción de Señal , Factores de Tiempo
10.
Neurobiol Dis ; 46(3): 710-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22426389

RESUMEN

Limiting the development of secondary damage represents one of the major goals of neuroprotective therapies after spinal cord injury. Here, we demonstrate that specific JNK inhibition via a single intraperitoneal injection of the cell permeable peptide D-JNKI1 6h after lesion improves locomotor recovery assessed by both the footprint and the BMS tests up to 4 months post-injury in mice. JNK inhibition prevents c-jun phosphorylation and caspase-3 cleavage, has neuroprotective effects and results in an increased sparing of white matter at the lesion site. Lastly, D-JNKI1 treated animals show a lower increase of erythrocyte extravasation and blood brain barrier permeability, thus indicating protection of the vascular system. In total, these results clearly point out JNK inhibition as a promising neuroprotective strategy for preventing the evolution of secondary damage after spinal cord injury.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Locomoción/efectos de los fármacos , Fármacos Neuroprotectores , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/fisiología , Western Blotting , Caspasa 3/metabolismo , Miembro Posterior/fisiología , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Inmunohistoquímica , Inyecciones Intraperitoneales , Masculino , Ratones , Fibras Nerviosas/fisiología , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-jun/metabolismo , Serotonina/fisiología , Médula Espinal/patología , Traumatismos de la Médula Espinal/enzimología , Traumatismos de la Médula Espinal/fisiopatología
11.
Elife ; 112022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35420982

RESUMEN

Cadherins contribute to the organization of nearly all tissues, but the functions of several evolutionarily conserved cadherins, including those of calsyntenins, remain enigmatic. Puzzlingly, two distinct, non-overlapping functions for calsyntenins were proposed: As postsynaptic neurexin ligands in synapse formation, or as presynaptic kinesin adaptors in vesicular transport. Here, we show that, surprisingly, acute CRISPR-mediated deletion of calsyntenin-3 in mouse cerebellum in vivo causes a large decrease in inhibitory synapse, but a robust increase in excitatory parallel-fiber synapses in Purkinje cells. As a result, inhibitory synaptic transmission was suppressed, whereas parallel-fiber synaptic transmission was enhanced in Purkinje cells by the calsyntenin-3 deletion. No changes in the dendritic architecture of Purkinje cells or in climbing-fiber synapses were detected. Sparse selective deletion of calsyntenin-3 only in Purkinje cells recapitulated the synaptic phenotype, indicating that calsyntenin-3 acts by a cell-autonomous postsynaptic mechanism in cerebellum. Thus, by inhibiting formation of excitatory parallel-fiber synapses and promoting formation of inhibitory synapses in the same neuron, calsyntenin-3 functions as a postsynaptic adhesion molecule that regulates the excitatory/inhibitory balance in Purkinje cells.


Asunto(s)
Cadherinas , Sinapsis , Animales , Proteínas de Unión al Calcio , Cerebelo/fisiología , Proteínas de la Membrana , Ratones , Células de Purkinje/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
12.
Nat Commun ; 12(1): 2380, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888718

RESUMEN

Diverse signaling complexes are precisely assembled at the presynaptic active zone for dynamic modulation of synaptic transmission and synaptic plasticity. Presynaptic GABAB-receptors nucleate critical signaling complexes regulating neurotransmitter release at most synapses. However, the molecular mechanisms underlying assembly of GABAB-receptor signaling complexes remain unclear. Here we show that neurexins are required for the localization and function of presynaptic GABAB-receptor signaling complexes. At four model synapses, excitatory calyx of Held synapses in the brainstem, excitatory and inhibitory synapses on hippocampal CA1-region pyramidal neurons, and inhibitory basket cell synapses in the cerebellum, deletion of neurexins rendered neurotransmitter release significantly less sensitive to GABAB-receptor activation. Moreover, deletion of neurexins caused a loss of GABAB-receptors from the presynaptic active zone of the calyx synapse. These findings extend the role of neurexins at the presynaptic active zone to enabling GABAB-receptor signaling, supporting the notion that neurexins function as central organizers of active zone signaling complexes.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptores de GABA-B/metabolismo , Sinapsis/metabolismo , Animales , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Cerebelo/citología , Cerebelo/metabolismo , Ratones , Ratones Noqueados , Modelos Animales , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Células Piramidales/metabolismo , Técnicas Estereotáxicas , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
13.
Elife ; 92020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31985401

RESUMEN

LAR-type receptor phosphotyrosine-phosphatases (LAR-RPTPs) are presynaptic adhesion molecules that interact trans-synaptically with multitudinous postsynaptic adhesion molecules, including SliTrks, SALMs, and TrkC. Via these interactions, LAR-RPTPs are thought to function as synaptogenic wiring molecules that promote neural circuit formation by mediating the establishment of synapses. To test the synaptogenic functions of LAR-RPTPs, we conditionally deleted the genes encoding all three LAR-RPTPs, singly or in combination, in mice before synapse formation. Strikingly, deletion of LAR-RPTPs had no effect on synaptic connectivity in cultured neurons or in vivo, but impaired NMDA-receptor-mediated responses. Deletion of LAR-RPTPs decreased NMDA-receptor-mediated responses by a trans-synaptic mechanism. In cultured neurons, deletion of all LAR-RPTPs led to a reduction in synaptic NMDA-receptor EPSCs, without changing the subunit composition or the protein levels of NMDA-receptors. In vivo, deletion of all LAR-RPTPs in the hippocampus at birth also did not alter synaptic connectivity as measured via AMPA-receptor-mediated synaptic responses at Schaffer-collateral synapses monitored in juvenile mice, but again decreased NMDA-receptor mediated synaptic transmission. Thus, LAR-RPTPs are not essential for synapse formation, but control synapse properties by regulating postsynaptic NMDA-receptors via a trans-synaptic mechanism that likely involves binding to one or multiple postsynaptic ligands.


Asunto(s)
Neuronas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Transcriptoma
14.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32706374

RESUMEN

Neurexins are presynaptic adhesion molecules that organize synapses by binding to diverse trans-synaptic ligands, but how neurexins are regulated is incompletely understood. Here we identify FAM19A/TAFA proteins, "orphan" cytokines, as neurexin regulators that interact with all neurexins, except for neurexin-1γ, via an unusual mechanism. Specifically, we show that FAM19A1-A4 bind to the cysteine-loop domain of neurexins by forming intermolecular disulfide bonds during transport through the secretory pathway. FAM19A-binding required both the cysteines of the cysteine-loop domain and an adjacent sequence of neurexins. Genetic deletion of neurexins suppressed FAM19A1 expression, demonstrating that FAM19As physiologically interact with neurexins. In hippocampal cultures, expression of exogenous FAM19A1 decreased neurexin O-glycosylation and suppressed its heparan sulfate modification, suggesting that FAM19As regulate the post-translational modification of neurexins. Given the selective expression of FAM19As in specific subtypes of neurons and their activity-dependent regulation, these results suggest that FAM19As serve as cell type-specific regulators of neurexin modifications.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Quimiocinas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Hipocampo/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo
15.
Neurobiol Dis ; 33(3): 518-25, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19166938

RESUMEN

Secretion of Amyloid-beta peptide (Abeta) circulating oligomers and their aggregate forms derived by processing of beta-amyloid precursor protein (APP) are a key event in Alzheimer's disease (AD). We show that phosphorylation of APP on threonine 668 may play a role in APP metabolism in H4-APP(sw) cell line, a degenerative AD model. We proved that JNK plays a fundamental role in this phosphorylation since its specific inhibition, with the JNK inhibitor peptide (D-JNKI1), induced APP degradation and prevented APP phosphorylation at T668. This results in a significant drop of betaAPPs, Abeta fragments and Abeta circulating oligomers. Moreover the D-JNKI1 treatment produced a switch in the APP metabolism, since the peptide reduced the rate of the amyloidogenic processing in favour of the non-amyloidogenic one. All together our results suggest an important link between APP metabolism and the JNK pathway and contribute to shed light on the molecular signalling pathway of this disease indicating JNK as an innovative target for AD therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Receptores de Superficie Celular/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Ensayo de Inmunoadsorción Enzimática , Fluoroinmunoensayo , Humanos , Immunoblotting , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas , Mutación , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Fosforilación , Nexinas de Proteasas , Receptores de Superficie Celular/genética
16.
Molecules ; 15(1): 114-27, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-20110876

RESUMEN

Hypoxia is an established factor of neurodegeneration. Nowadays, attention is directed at understanding how alterations in the expression of stress-related signaling proteins contribute to age dependent neuronal vulnerability to injury. The purpose of this study was to investigate how Hif-1alpha, a major neuroprotective factor, and JNK signaling, a key pathway in neurodegeneration, relate to hypoxic injury in young (6DIV) and adult (12DIV) neurons. We could show that in young neurons as compared to mature ones, the protective factor Hif-1alpha is more induced while the stress protein phospho-JNK displays lower basal levels. Indeed, changes in the expression levels of these proteins correlated with increased vulnerability of adult neurons to hypoxic injury. Furthermore, we describe for the first time that treatment with the D-JNKI1, a JNK-inhibiting peptide, rescues adult hypoxic neurons from death and contributes to Hif-1alpha upregulation, probably via a direct interaction with the Hif-1alpha protein.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/enzimología , Neuronas/patología , Envejecimiento/patología , Secuencia de Aminoácidos , Animales , Muerte Celular , Hipoxia de la Célula , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Sistema de Señalización de MAP Quinasas , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
17.
Oncotarget ; 8(47): 83038-83051, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29137322

RESUMEN

Recently a range of ocular manifestations such as retinal and lens amyloid-beta accumulation and retinal nerve fiber layer loss have been proposed as potential biomarkers in Alzheimer disease (AD). The TgCRND8 mouse model of AD exhibits age-dependent amyloid ß (Aß) oligomers accumulation and cognitive defects, amyloid plaques and hyperphosphorylated Tau deposition and inflammation. We proved the correlation between ocular pathologies and AD, observing increased levels of p-APP and p-Tau, accumulation of Aß oligomers in the retina, eye, and optic nerve. The accumulation of amyloid markers was significantly stronger in the retinal ganglion cell (RGC) layer, suggesting that RGC might be more susceptible to degeneration. We detected a thinning of the RGC layer as well as RGC death in the retina of TgCRND8 mice, by using a combination of Optical Coherence Tomography (OCT), immunofluorescence, immunohistochemistry and Western blotting techniques. We proved for the first time the key role of C-Jun N-terminal Kinase (JNK) in the ocular degeneration. In support of this, the administration of the JNK inhibitor, D-JNKI1, was able to counteract the Aß and p-Tau accumulation in the retina of TgCRND8 mice, and consequently reduce RGCs loss. These results confirm that degenerative changes in the retina/eye of AD mouse model mirrors the events observed in the brain parenchyma. Ocular changes can be detected by non-invasive imaging techniques, such as OCT, to study and test different therapeutic strategies against degenerative events associated to AD.

18.
PLoS One ; 11(6): e0158295, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27348751

RESUMEN

Extended synaptotagmins (ESyts) are endoplasmic reticulum (ER) proteins composed of an N-terminal transmembrane region, a central SMP-domain, and five (ESyt1) or three C-terminal cytoplasmic C2-domains (ESyt2 and ESyt3). ESyts bind phospholipids in a Ca2+-dependent manner via their C2-domains, are localized to ER-plasma membrane contact sites, and may catalyze lipid exchange between the plasma membrane and the ER via their SMP-domains. However, the overall function of ESyts has remained enigmatic. Here, we generated triple constitutive and conditional knock-out mice that lack all three ESyt isoforms; in addition, we produced knock-in mice that express mutant ESyt1 or ESyt2 carrying inactivating substitutions in the Ca2+-binding sites of their C2A-domains. Strikingly, all ESyt mutant mice, even those lacking all ESyts, were apparently normal and survived and bred in a manner indistinguishable from control mice. ESyt mutant mice displayed no major changes in brain morphology or synaptic protein composition, and exhibited no large alterations in stress responses. Thus, in mice ESyts do not perform an essential role in basic cellular functions, suggesting that these highly conserved proteins may perform a specialized role that may manifest only during specific, as yet untested challenges.


Asunto(s)
Retículo Endoplásmico/metabolismo , Fertilidad/genética , Fenotipo , Sinaptotagminas/deficiencia , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Señalización del Calcio , Línea Celular , Supervivencia Celular/genética , Técnicas de Inactivación de Genes , Orden Génico , Marcación de Gen , Sitios Genéticos , Genotipo , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Estrés Fisiológico , Sinaptotagminas/genética
19.
Neurobiol Aging ; 36(1): 123-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25104560

RESUMEN

To characterize the mechanisms underlying region- and age-dependent hippocampal synaptic dysfunction in Alzheimer's disease, we used transgenic CRND8 mice, expressing the Swedish-Indiana APP mutation. In 2-month-old mice, no ß-amyloid plaques deposition, but the presence of soluble oligomers, were found in CA1 area but not in dentate gyrus (DG). At this age, long-term potentiation (LTP) was reduced selectively in CA1. In 6-month-old mice, the presence of soluble oligomers was accompanied by accumulation of ß-amyloid plaques and decreased LTP in CA1 and DG regions. In both regions, the loss of LTP was linked to reduced N-methyl-D-aspartate (NMDA) to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) current ratio. The acetylcholine-esterase inhibitor, neostigmine rescued LTP in CA1 area at early stage of the disease but not after plaques deposition. Conversely, the NMDA receptor antagonist memantine restored LTP selectively in DG at later stages of the disease. Both these effects were associated with a normalization of the NMDA to AMPA ratio. The association between the recovery of LTP and the normalization of the NMDA to AMPA ratio provides information on new possible therapeutic strategies in Alzheimer's disease.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/genética , N-Metilaspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Enfermedad de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animales , Inhibidores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Transgénicos , Terapia Molecular Dirigida , Mutación , Neostigmina/farmacología , Placa Amiloide/metabolismo
20.
J Pharmacol Toxicol Methods ; 70(1): 55-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24814549

RESUMEN

INTRODUCTION: Cell permeable peptides (CPPs) represent a novel tool for the delivery of bioactive molecules into scarcely accessible organs, such as the brain. CPPs have been successfully used in pre-clinical studies for a variety of diseases, ranging from cancer to neurological disorders. However, the mechanisms by which CPPs cross biological membranes, as well as their pharmacokinetic properties, have been poorly explored due to the lack of specific and sensitive analytical methods. METHODS: In this paper we describe a protocol to quantitatively determine the amount of CPPs in in vitro and in vivo experimental models. To this end we selected the peptide D-JNKI1 that was shown to prevent neurodegeneration in both acute and chronic degenerative disorders. This method allows an accurate quantitative analysis of D-JNKI1 in both neuronal lysates and tissue homogenates using mass spectrometry and stable isotope dilution approach. RESULTS: We found that D-JNKI1 crosses cellular membranes with fast kinetics, through an active and passive mechanism. After acute intraperitoneal (ip) administration of D-JNKI1 in mice, the peptide was found in the main organs with particular regard to the liver and kidney. Interestingly, D-JNKI1 crosses the blood brain barrier (BBB) and reaches the brain, where it remains for one week. DISCUSSION: The challenge lies in developing the clinical application of therapeutic cell permeable peptides. Discerning pharmacokinetic properties is a high priority to produce a powerful therapeutic strategy. Overall, our data shed light on the pharmacokinetic properties of D-JNKI1 and supports its powerful neuroprotective effect.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Péptidos/metabolismo , Péptidos/farmacología , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones , Neuronas/efectos de los fármacos , Péptidos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA