Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Eur J Immunol ; 51(7): 1854-1856, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33768654

RESUMEN

Gene profiling revealed that the S1P signaling pathway is induced by TGF-ß1 during LC commitment of monocytopoietic cells. Constitutive-active TGF-ß1-S1P signaling seems to elevate the activation threshold of LCs and thereby prevent inappropriate and overshooting immune responses to microbial and physicochemical environmental signals. In turn, signals that lead to LC migration may disrupt this pathway via inhibiting S1P bioavailability.


Asunto(s)
Diferenciación Celular/fisiología , Células Dendríticas/metabolismo , Células de Langerhans/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Factor de Crecimiento Transformador beta1/metabolismo , Movimiento Celular/fisiología , Células Cultivadas , Humanos , Esfingosina/metabolismo
2.
J Allergy Clin Immunol ; 147(5): 1810-1822.e9, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33250156

RESUMEN

BACKGROUND: Bone morphogenetic proteins (BMPs) are members of the TGF-ß family that signal via the BMP receptor (BMPR) signaling cascade, distinct from canonical TGF-ß signaling. BMP downstream signaling is strongly induced within epidermal keratinocytes in cutaneous psoriatic lesions, and BMP7 instructs monocytic cells to acquire characteristics of psoriasis-associated Langerhans dendritic cells (DCs). Regulatory T (Treg)-cell numbers strongly increase during psoriatic skin inflammation and were recently shown to limit psoriatic skin inflammation. However, the factors mediating Treg-cell accumulation in psoriatic skin currently remain unknown. OBJECTIVE: We sought to investigate the role of BMP signaling in Treg-cell accumulation in psoriasis. METHODS: The following methods were used: immunohistology of patients and healthy controls; ex vivo models of Treg-cell generation in the presence or absence of Langerhans cells; analysis of BMP versus canonical TGF-ß signaling in DCs and Treg cells; and modeling of psoriatic skin inflammation in mice lacking the BMPR type 1a in CD11c+ cells. RESULTS: We here demonstrated a positive correlation between Treg-cell numbers and epidermal BMP7 expression in cutaneous psoriatic lesions and show that unlike Treg cells from healthy skin, a portion of inflammation-associated Treg cells exhibit constitutive-active BMP signaling. We further found that BMPR signaling licenses inflammation-associated Langerhans cell/DC to gain an enhanced capacity to promote Treg cells via BMPR-mediated CD25 induction and that this effect is associated with reduced skin inflammation. CONCLUSIONS: Psoriatic lesions are marked by constitutive high BMP7/BMPR signaling in keratinocytes, which instructs inflammatory DCs to gain enhanced Treg-cell-stimulatory activity. Locally secreted BMP7 can directly promote Treg-cell generation through the BMP signaling cascade.


Asunto(s)
Proteína Morfogenética Ósea 7/inmunología , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/inmunología , Células Dendríticas/inmunología , Queratinocitos/inmunología , Psoriasis/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
3.
J Allergy Clin Immunol ; 145(4): 1194-1207.e11, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31870764

RESUMEN

BACKGROUND: Epidermal hyperplasia represents a morphologic hallmark of psoriatic skin lesions. Langerhans cells (LCs) in the psoriatic epidermis engage with keratinocytes (KCs) in tight physical interactions; moreover, they induce T-cell-mediated immune responses critical to psoriasis. OBJECTIVE: This study sought to improve the understanding of epidermal factors in psoriasis pathogenesis. METHODS: BMP7-LCs versus TGF-ß1-LCs were phenotypically characterized and their functional properties were analyzed using flow cytometry, cell kinetic studies, co-culture with CD4 T cells, and cytokine measurements. Furthermore, immunohistology of healthy and psoriatic skin was performed. Additionally, in vivo experiments with Junf/fJunBf/fK5cre-ERT mice were carried out to assess the role of bone morphogenetic protein (BMP) signaling in psoriatic skin inflammation. RESULTS: This study identified a KC-derived signal (ie, BMP signaling) to promote epidermal changes in psoriasis. Whereas BMP7 is strictly confined to the basal KC layer in the healthy skin, it is expressed at high levels throughout the lesional psoriatic epidermis. BMP7 instructs precursor cells to differentiate into LCs that phenotypically resemble psoriatic LCs. These BMP7-LCs exhibit proliferative activity and increased sensitivity to bacterial stimulation. Moreover, aberrant high BMP signaling in the lesional epidermis is mediated by a KC intrinsic mechanism, as suggested from murine data and clinical outcome after topical antipsoriatic treatment in human patients. CONCLUSIONS: These data indicate that available TGF-ß family members within the lesional psoriatic epidermis preferentially signal through the canonical BMP signaling cascade to instruct inflammatory-type LCs and to promote psoriatic epidermal changes. Targeting BMP signaling might allow to therapeutically interfere with cutaneous psoriatic manifestations.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Linfocitos T CD4-Positivos/inmunología , Epidermis/inmunología , Inflamación/inmunología , Queratinocitos/fisiología , Células de Langerhans/inmunología , Psoriasis/metabolismo , Adulto , Anciano , Animales , Proteína Morfogenética Ósea 7/genética , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Citocinas/metabolismo , Epidermis/patología , Femenino , Regulación de la Expresión Génica , Humanos , Activación de Linfocitos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Adulto Joven
4.
Int J Cancer ; 146(9): 2531-2538, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31396956

RESUMEN

KRAS mutations hinder therapeutic efficacy of epidermal growth factor receptor (EGFR)-specific monoclonal antibodies cetuximab and panitumumab-based immunotherapy of EGFR+ cancers. Although cetuximab inhibits KRAS-mutated cancer cell growth in vitro by natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), KRAS-mutated colorectal carcinoma (CRC) cells escape NK cell immunosurveillance in vivo. To overcome this limitation, we used cetuximab and panitumumab to redirect Fcγ chimeric receptor (CR) T cells against KRAS-mutated HCT116 colorectal cancer (CRC) cells. We compared four polymorphic Fcγ-CR constructs including CD16158F -CR, CD16158V -CR, CD32131H -CR, and CD32131R -CR transduced into T cells by retroviral vectors. Percentages of transduced T cells expressing CD32131H -CR (83.5 ± 9.5) and CD32131R -CR (77.7 ± 13.2) were significantly higher than those expressing with CD16158F -CR (30.3 ± 10.2) and CD16158V -CR (51.7 ± 13.7) (p < 0.003). CD32131R -CR T cells specifically bound soluble cetuximab and panitumumab. However, only CD16158V -CR T cells released high levels of interferon gamma (IFNγ = 1,145.5 pg/ml ±16.5 pg/ml, p < 0.001) and tumor necrosis factor alpha (TNFα = 614 pg/ml ± 21 pg/ml, p < 0.001) upon incubation with cetuximab-opsonized HCT116 cells. Moreover, only CD16158V -CR T cells combined with cetuximab killed HCT116 cells and A549 KRAS-mutated cells in vitro. CD16158V -CR T cells also effectively controlled subcutaneous growth of HCT116 cells in CB17-SCID mice in vivo. Thus, CD16158V -CR T cells combined with cetuximab represent useful reagents to develop innovative EGFR+KRAS-mutated CRC immunotherapies.


Asunto(s)
Cetuximab/farmacología , Neoplasias Colorrectales/terapia , Resistencia a Antineoplásicos , Inmunoterapia Adoptiva/métodos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de IgG/inmunología , Animales , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Humanos , Masculino , Ratones , Ratones SCID , Receptores de IgG/genética , Células Tumorales Cultivadas , Valina/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int J Cancer ; 146(1): 236-247, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479522

RESUMEN

Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R -chimeric receptor (CR), and those engineered with the low-affinity CD16158F -CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R -CR T cells was 74 ± 10%, whereas the percentage of CD16158F -CR T cells was 46 ± 15%. Only CD32A131R -CR T cells bound panitumumab. CD32A131R -CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F -CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R -CR on T cells by cetuximab or panitumumab and CD16158F -CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R -CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Cetuximab/administración & dosificación , Neoplasias/tratamiento farmacológico , Panitumumab/administración & dosificación , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de IgG/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Neoplasias/metabolismo , Linfocitos T/metabolismo
6.
Front Immunol ; 14: 1275085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965340

RESUMEN

Langerhans cell histiocytosis (LCH) is a rare and clinically heterogeneous hematological disease characterized by the accumulation of mononuclear phagocytes in various tissues and organs. LCH is often characterized by activating mutations of the mitogen-activated protein kinase (MAPK) pathway with BRAFV600E being the most recurrent mutation. Although this discovery has greatly helped in understanding the disease and in developing better investigational tools, the process of malignant transformation and the cell of origin are still not fully understood. In this review, we focus on the newest updates regarding the molecular pathogenesis of LCH and novel suggested pathways with treatment potential.


Asunto(s)
Histiocitosis de Células de Langerhans , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/terapia , Mutación , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación con Ganancia de Función
7.
Cancers (Basel) ; 15(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444456

RESUMEN

Acute lymphoblastic leukemia (ALL) is a blood cancer that primarily affects children but also adults. It is due to the malignant proliferation of lymphoid precursor cells that invade the bone marrow and can spread to extramedullary sites. ALL is divided into B cell (85%) and T cell lineages (10 to 15%); rare cases are associated with the natural killer (NK) cell lineage (<1%). To date, the survival rate in children with ALL is excellent while in adults continues to be poor. Despite the therapeutic progress, there are subsets of patients that still have high relapse rates after chemotherapy or hematopoietic stem cell transplantation (HSCT) and an unsatisfactory cure rate. Hence, the identification of more effective and safer therapy choices represents a primary issue. In this review, we will discuss novel therapeutic options including bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor (CAR)-based therapies, and other promising treatments for both pediatric and adult patients.

8.
J Vis Exp ; (193)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36971438

RESUMEN

Throughout their lifetime, hematopoietic stem and progenitor cells (HSPCs) acquire somatic mutations. Some of these mutations alter HSPC functional properties such as proliferation and differentiation, thereby promoting the development of hematologic malignancies. Efficient and precise genetic manipulation of HSPCs is required to model, characterize, and better understand the functional consequences of recurrent somatic mutations. Mutations can have a deleterious effect on a gene and result in loss-of-function (LOF) or, in stark contrast, may enhance function or even lead to novel characteristics of a particular gene, termed gain-of-function (GOF). In contrast to LOF mutations, GOF mutations almost exclusively occur in a heterozygous fashion. Current genome-editing protocols do not allow for the selective targeting of individual alleles, hampering the ability to model heterozygous GOF mutations. Here, we provide a detailed protocol on how to engineer heterozygous GOF hotspot mutations in human HSPCs by combining CRISPR/Cas9-mediated homology-directed repair and recombinant AAV6 technology for efficient DNA donor template transfer. Importantly, this strategy makes use of a dual fluorescent reporter system to allow for the tracking and purification of successfully heterozygously edited HSPCs. This strategy can be employed to precisely investigate how GOF mutations affect HSPC function and their progression toward hematological malignancies.


Asunto(s)
Mutación con Ganancia de Función , Edición Génica , Humanos , Edición Génica/métodos , Células Madre Hematopoyéticas , Mutación , Sistemas CRISPR-Cas
9.
Leukemia ; 37(4): 843-853, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813992

RESUMEN

Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.


Asunto(s)
Trastornos Mieloproliferativos , Mielofibrosis Primaria , Humanos , Animales , Ratones , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Mutación , Células Madre Hematopoyéticas/metabolismo , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo
10.
Antioxidants (Basel) ; 11(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883769

RESUMEN

Dietary polyphenols, which are present in Aronia melanocarpa, have been associated with various beneficial effects on human health including antioxidant, antiviral, and anti-inflammatory activities. We aimed to investigate the immunomodulatory effects of aronia juice polyphenols in a randomized placebo-controlled human intervention study and cell culture experiments. A total of 40 females were asked to consume either 200 mL of aronia juice or a placebo drink for six weeks and were investigated again after a washout period of another six weeks. We observed that only half of the participants tolerated the aronia juice well (Vt) and the other half reported complaints (Vc). The placebo (P) was generally tolerated with one exception (p = 0.003). Plasma polyphenol levels increased significantly in Vt after the intervention (p = 0.024) but did neither in P nor in Vc. Regulatory T cell (Treg) frequencies remained constant in Vt and P during the intervention, whereas Tregs decreased in Vc (p = 0.018). In cell culture, inhibiting effects of ferulic acid (p = 0.0005) and catechin (p = 0.0393) on the differentiation of Tregs were observed as well as reduced activation of CD4-T cells in ferulic acid (p = 0.0072) and aronia juice (p = 0.0163) treated cells. Interestingly, a CD4+CD25-FoxP3+ cell population emerged in vitro in response to aronia juice, but not when testing individual polyphenols. In conclusion, our data strengthen possible individual hormetic effects, the importance of the food matrix for bioactivity, and the need for further investigations on possible impacts of specific physiological features such as the gut microbiota in the context of personalized nutrition.

11.
Life Sci Alliance ; 5(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36241426

RESUMEN

The FcγRII (CD32) ligands are IgFc fragments and pentraxins. The existence of additional ligands is unknown. We engineered T cells with human chimeric receptors resulting from the fusion between CD32 extracellular portion and transmembrane CD8α linked to CD28/ζ chain intracellular moiety (CD32-CR). Transduced T cells recognized three breast cancer (BC) and one colon cancer cell line among 15 tested in the absence of targeting antibodies. Sensitive BC cell conjugation with CD32-CR T cells induced CD32 polarization and down-regulation, CD107a release, mutual elimination, and proinflammatory cytokine production unaffected by human IgGs but enhanced by cetuximab. CD32-CR T cells protected immunodeficient mice from subcutaneous growth of MDA-MB-468 BC cells. RNAseq analysis identified a 42 gene fingerprint predicting BC cell sensitivity and favorable outcomes in advanced BC. ICAM1 was a major regulator of CD32-CR T cell-mediated cytotoxicity. CD32-CR T cells may help identify cell surface CD32 ligand(s) and novel prognostically relevant transcriptomic signatures and develop innovative BC treatments.


Asunto(s)
Neoplasias de la Mama , Linfocitos T , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Antígenos CD28/metabolismo , Cetuximab/metabolismo , Femenino , Humanos , Ligandos , Ratones
12.
Front Immunol ; 12: 802346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925388

RESUMEN

Bone morphogenetic proteins (BMPs) are potent signaling molecules initially described as osteopromoting proteins. BMPs represent one of the members of the larger TGFß family and today are recognized for their important role in numerous processes. Among the wide array of functions recently attributed to them, BMPs were also described to be involved in the regulation of components of the innate and adaptive immune response. This review focuses on the signaling pathway of BMPs and highlights the effects of BMP signaling on the differentiation, activation, and function of the main cell types of the immune system.


Asunto(s)
Proteínas Morfogenéticas Óseas/inmunología , Sistema Inmunológico/inmunología , Transducción de Señal/inmunología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Humanos , Sistema Inmunológico/metabolismo
13.
Cancers (Basel) ; 13(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34944865

RESUMEN

Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it is associated with significant morbidity and mortality. However, increasing understanding of AML immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy is considered an attractive strategy for controlling and eliminating the disease. It can be a real breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor T cells (CAR-T cells), and vaccine therapeutic choices.

14.
Cell Rep ; 35(4): 109049, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910004

RESUMEN

Transforming growth factor ß (TGF-ß) family ligands are key regulators of dendritic cell (DC) differentiation and activation. Epidermal Langerhans cells (LCs) require TGF-ß family signaling for their differentiation, and canonical TGF-ß1 signaling secures a non-activated LC state. LCs reportedly control skin inflammation and are replenished from peripheral blood monocytes, which also give rise to pro-inflammatory monocyte-derived DCs (moDCs). By studying mechanisms in inflammation, we previously screened LCs versus moDCs for differentially expressed microRNAs (miRNAs). This revealed that miR-424/503 is the most strongly inversely regulated (moDCs > LCs). We here demonstrate that miR-424/503 is induced during moDC differentiation and promotes moDC differentiation in human and mouse. Inversely, forced repression of miR-424 during moDC differentiation facilitates TGF-ß1-dependent LC differentiation. Mechanistically, miR-424/503 deficiency in monocyte/DC precursors leads to the induction of TGF-ß1 response genes critical for LC differentiation. Therefore, the miR-424/503 gene cluster plays a decisive role in anti-inflammatory LC versus pro-inflammatory moDC differentiation from monocytes.


Asunto(s)
Antiinflamatorios/uso terapéutico , Células de Langerhans/inmunología , MicroARNs/metabolismo , Familia de Multigenes/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antiinflamatorios/farmacología , Diferenciación Celular , Humanos , Ratones , Transducción de Señal
15.
Biochem Pharmacol ; 166: 335-346, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31176617

RESUMEN

The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA) as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory microenvironments associated with solid tumours. This review focuses on the basic principles involved in development of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores Quiméricos de Antígenos/administración & dosificación , Receptores de IgG/administración & dosificación , Animales , Humanos , Inmunoterapia/métodos , Inmunoterapia/tendencias , Inmunoterapia Adoptiva/tendencias , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores de IgG/inmunología
17.
Front Immunol ; 8: 457, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496440

RESUMEN

For many years, disappointing results have been generated by many investigations, which have utilized a variety of immunologic strategies to enhance the ability of a patient's immune system to recognize and eliminate malignant cells. However, in recent years, immunotherapy has been used successfully for the treatment of hematologic and solid malignancies. The impressive clinical responses observed in many types of cancer have convinced even the most skeptical clinical oncologists that a patient's immune system can recognize and reject his tumor if appropriate strategies are implemented. The success immunotherapy is due to the development of at least three therapeutic strategies. They include tumor-associated antigen (TAA)-specific monoclonal antibodies (mAbs), T cell checkpoint blockade, and TAA-specific chimeric antigen receptors (CARs) T cell-based immunotherapy. However, the full realization of the therapeutic potential of these approaches requires the development of strategies to counteract and overcome some limitations. They include off-target toxicity and mechanisms of cancer immune evasion, which obstacle the successful clinical application of mAbs and CAR T cell-based immunotherapies. Thus, we and others have developed the Fc gamma chimeric receptors (Fcγ-CRs)-based strategy. Like CARs, Fcγ-CRs are composed of an intracellular tail resulting from the fusion of a co-stimulatory molecule with the T cell receptor ζ chain. In contrast, the extracellular CAR single-chain variable fragment (scFv), which recognizes the targeted TAA, has been replaced with the extracellular portion of the FcγRIIIA (CD16). Fcγ-CR T cells have a few intriguing features. First, given in combination with mAbs, Fcγ-CR T cells mediate anticancer activity in vitro and in vivo by an antibody-mediated cellular cytotoxicity mechanism. Second, CD16-CR T cells can target multiple cancer types provided that TAA-specific mAbs with the appropriate specificity are available. Third, the off-target effect of CD16-CR T cells may be controlled by withdrawing the mAb administration. The goal of this manuscript was threefold. First, we review the current state-of-the-art of preclinical CD16-CR T cell technology. Second, we describe its in vitro and in vivo antitumor activity. Finally, we compare the advantages and limitations of the CD16-CR T cell technology with those of CAR T cell methodology.

18.
Oncotarget ; 7(2): 2070-9, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26655503

RESUMEN

Acute myeloid leukemia (AML) cells induce, in vitro, NK cell abnormalities (NKCAs) including apoptosis and activating receptor down-regulation. The potential negative impact of AML cells on the therapeutic efficacy of NK cell-based strategies prompted us to analyze the mechanisms underlying NKCAs and to develop approaches to protect NK cells from NKCAs. NKCA induction by the AML leukemia cells target a subpopulation of peripheral blood NK cells and is interleukin-2 independent but is abrogated by a long-term culture of NK (LTNK) cells at 37°C. LTNK cells displayed a significantly enhanced ability to damage AML cells in vitro and inhibited the subcutaneous growth of ML-2 cells grafted into CB17 SCID mice. Actinomycin D restored the susceptibility of LTNK cells to NKCAs while TAPI-0, a functional analog of the tissue inhibitor of metalloproteinase (TIMP) 3, inhibits ML-2 cell-induced NKCAs suggesting that the generation of NK cell resistance to NKCAs involves RNA transcription and metalloproteinase (MPP) inactivation. This conclusion is supported by the reduced susceptibility to AML cell-induced NKCAs of LTNK cells in which TIMP3 gene and protein are over-expressed. This information may contribute to the rational design of targeted strategies to enhance the efficacy of NK cell-based-immunotherapy of AML with haploidentical NK cells.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/prevención & control , Linfocitos/inmunología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Técnicas In Vitro , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Leucemia Mieloide Aguda/metabolismo , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Ratones , Ratones SCID , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA