Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(4): E639-E647, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311325

RESUMEN

Complex networked systems ranging from ecosystems and the climate to economic, social, and infrastructure systems can exhibit a tipping point (a "point of no return") at which a total collapse of the system occurs. To understand the dynamical mechanism of a tipping point and to predict its occurrence as a system parameter varies are of uttermost importance, tasks that are hindered by the often extremely high dimensionality of the underlying system. Using complex mutualistic networks in ecology as a prototype class of systems, we carry out a dimension reduction process to arrive at an effective 2D system with the two dynamical variables corresponding to the average pollinator and plant abundances. We show, using 59 empirical mutualistic networks extracted from real data, that our 2D model can accurately predict the occurrence of a tipping point, even in the presence of stochastic disturbances. We also find that, because of the lack of sufficient randomness in the structure of the real networks, weighted averaging is necessary in the dimension reduction process. Our reduced model can serve as a paradigm for understanding and predicting the tipping point dynamics in real world mutualistic networks for safeguarding pollinators, and the general principle can be extended to a broad range of disciplines to address the issues of resilience and sustainability.

2.
Environ Sci Technol ; 52(11): 6534-6543, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29734807

RESUMEN

It is now common practice in environmental life cycle assessment (LCA) to conduct sensitivity analyses to identify critical parameters and prioritize further research. Typical approaches include variation of input parameters one at a time to determine the corresponding variation in characterized midpoints or normalized and weighted end points. Generally, those input parameters that cause the greatest variations in output criteria are accepted as the most important subjects of further investigation. However, in comparative LCA of emerging technologies, the typical approach to sensitivity analysis may misdirect research and development (R&D) toward addressing uncertainties that are inconsequential or counterproductive. This paper presents a novel method of sensitivity analysis for a decision-driven, anticipatory LCA of three emerging photovoltaic (PV) technologies: amorphous-Si (a-Si), CdTe and ribbon-Si. Although traditional approaches identify metal depletion as critical, a hypothetical reduction of uncertainty in metal depletion fails to improve confidence in the environmental comparison. By contrast, the novel approach directs attention toward marine eutrophication, where uncertainty reduction significantly improves decision confidence in the choice between a-Si and CdTe. The implication is that the novel method will result in better recommendations on the choice of the environmentally preferable emerging technology alternative for commercialization.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Telurio , Incertidumbre
3.
Sci Eng Ethics ; 21(5): 1197-215, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25082500

RESUMEN

Fundamental problems of environmental sustainability, including climate change and fisheries management, require collective action on a scale that transcends the political and cultural boundaries of the nation-state. Rational, self-interested neoclassical economic theories of human behavior predict tragedy in the absence of third party enforcement of agreements and practical difficulties that prevent privatization. Evolutionary biology offers a theory of cooperation, but more often than not in a context of discrimination against other groups. That is, in-group boundaries are necessarily defined by those excluded as members of out-groups. However, in some settings human's exhibit behavior that is inconsistent with both rational economic and group driven cooperation of evolutionary biological theory. This paper reports the results of a non-cooperative game-theoretic exercise that models a tragedy of the commons problem in which groups of players may advance their own positions only at the expense of other groups. Students enrolled from multiple universities and assigned to different multi-university identity groups participated in experiments that repeatedly resulted in cooperative outcomes despite intergroup conflicts and expressions of group identity. We offer three possible explanations: (1) students were cooperative because they were in an academic setting; (2) students may have viewed their instructors as the out-group; or (3) the emergence of a small number of influential, ethical leaders is sufficient to ensure cooperation amongst the larger groups. From our data and analysis, we draw out lessons that may help to inform approaches for institutional design and policy negotiations, particularly in climate change management.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Conducta Cooperativa , Teoría del Juego , Relaciones Interpersonales , Política Ambiental , Explotaciones Pesqueras , Humanos , Modelos Teóricos , Estudiantes , Universidades
4.
Environ Sci Technol ; 48(17): 10010-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25127004

RESUMEN

Current policies accelerating photovoltaics (PV) deployments are motivated by environmental goals, including reducing greenhouse gas (GHG) emissions by displacing electricity generated from fossil-fuels. Existing practice assesses environmental benefits on a net life-cycle basis, where displaced GHG emissions offset those generated during PV production. However, this approach does not consider that the environmental costs of GHG release during production are incurred early, while environmental benefits accrue later. Thus, where policy targets suggest meeting GHG reduction goals established by a certain date, rapid PV deployment may have counterintuitive, albeit temporary, undesired consequences. On a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood, particularly when PV manufacturing utilizes GHG-intensive energy sources (e.g., coal), but deployment occurs in areas with less GHG-intensive electricity sources (e.g., hydroelectric). This paper details a dynamic CRF model to examine the intertemporal warming impacts of PV deployments in California and Wyoming. CRF payback times are longer than GHG payback times by 6-12 years in California and 6-11 years in Wyoming depending on the PV technology mix and deployment strategy. For the same PV capacity being deployed, early installations yield greater CRF benefits (calculated over 10 and 25 years) than installations occurring later in time. Further, CRF benefits are maximized when PV technologies with the lowest manufacturing GHG footprint (cadmium telluride) are deployed in locations with the most GHG-intensive grids (i.e., Wyoming).


Asunto(s)
Electricidad , Radiación , California , Fuentes Generadoras de Energía , Gases/análisis , Efecto Invernadero , Modelos Teóricos , Factores de Tiempo , Wyoming
5.
Environ Sci Technol ; 48(18): 10531-8, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25121583

RESUMEN

Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Contaminación Ambiental/prevención & control , Materiales Manufacturados , Modelos Teóricos , Tecnología/normas , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Contaminación Ambiental/estadística & datos numéricos , Humanos , Formulación de Políticas , Riesgo , Tecnología/estadística & datos numéricos , Tecnología/tendencias
6.
Sci Eng Ethics ; 19(3): 1323-39, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22895636

RESUMEN

The wicked problems that constitute sustainability require students to learn a different set of ethical skills than is ordinarily required by professional ethics. The focus for sustainability ethics must be redirected towards: (1) reasoning rather than rules, and (2) groups rather than individuals. This need for a different skill set presents several pedagogical challenges to traditional programs of ethics education that emphasize abstraction and reflection at the expense of experimentation and experience. This paper describes a novel pedagogy of sustainability ethics that is based on noncooperative, game-theoretic problems that cause students to confront two salient questions: "What are my obligations to others?" and "What am I willing to risk in my own well-being to meet those obligations?" In comparison to traditional professional ethics education, the game-based pedagogy moves the learning experience from: passive to active, apathetic to emotionally invested, narratively closed to experimentally open, and from predictable to surprising. In the context of game play, where players must make decisions that can adversely impact classmates, students typically discover a significant gap between their moral aspirations and their moral actions. When the games are delivered sequentially as part of a full course in Sustainability Ethics, students may experience a moral identity crisis as they reflect upon the incongruity of their self-understanding and their behavior. Repeated play allows students to reconcile this discrepancy through group deliberation that coordinates individual decisions to achieve collective outcomes. It is our experience that students gradually progress through increased levels of group tacit knowledge as they encounter increasingly complex game situations.


Asunto(s)
Conservación de los Recursos Naturales , Toma de Decisiones/ética , Ética Profesional/educación , Ética en Investigación/educación , Teoría del Juego , Obligaciones Morales , Enseñanza/métodos , Curriculum , Emociones , Ingeniería/ética , Procesos de Grupo , Humanos , Crisis de Identidad , Ciencia/ética , Autoimagen , Estudiantes
8.
Environ Sci Technol ; 45(12): 5068-74, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21524065

RESUMEN

Emerging environmental threats such as novel chemical compounds, biological agents, and nanomaterials present serious challenges to traditional models of risk analysis and regulatory risk management processes. Even a massive expansion of risk and life-cycle assessment research efforts is unlikely to keep pace with rapid technological change resulting in new and modified materials with changing properties. Therefore, it is essential to have a framework for interpreting available information in the context of high uncertainty and a strategy for prioritizing research efforts to reduce those uncertainties that are most critical. We discuss how integrating the three analytic approaches of risk assessment, life-cycle assessment, and multicriteria decision analysis into a framework permits understanding uncertainty and prioritizes needs for scientific research. Our approach is illustrated with two separate cases: nanomaterials and contaminated sediment remediation.


Asunto(s)
Técnicas de Apoyo para la Decisión , Contaminación Ambiental/análisis , Sedimentos Geológicos/química , Medición de Riesgo , Contaminantes del Suelo/análisis
9.
Environ Sci Technol ; 44(22): 8704-11, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20964398

RESUMEN

The unprecedented uncertainty associated with engineered nanomaterials greatly expands the need for research regarding their potential environmental consequences. However, decision-makers such as regulatory agencies, product developers, or other nanotechnology stakeholders may not find the results of such research directly informative of decisions intended to mitigate environmental risks. To help interpret research findings and prioritize new research needs, there is an acute need for structured decision-analytic aids that are operable in a context of extraordinary uncertainty. Whereas existing stochastic decision-analytic techniques explore uncertainty only in decision-maker preference information, this paper extends model uncertainty to technology performance. As an illustrative example, the framework is applied to the case of single-wall carbon nanotubes. Four different synthesis processes (arc, high pressure carbon monoxide, chemical vapor deposition, and laser) are compared based on five salient performance criteria. A probabilistic rank ordering of preferred processes is determined using outranking normalization and a linear-weighted sum for different weighting scenarios including completely unknown weights and four fixed-weight sets representing hypothetical stakeholder views. No single process pathway dominates under all weight scenarios, but it is likely that some inferior process technologies could be identified as low priorities for further research.


Asunto(s)
Técnicas de Apoyo para la Decisión , Materiales Manufacturados , Nanotubos de Carbono/química , Análisis Costo-Beneficio , Eficiencia Organizacional , Nanotecnología/economía , Nanotubos de Carbono/economía , Medición de Riesgo , Procesos Estocásticos
11.
Sci Rep ; 8(1): 2111, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391411

RESUMEN

Previous studies of multilayer network robustness model cascading failures via a node-to-node percolation process that assumes "strong" interdependence across layers-once a node in any layer fails, its neighbors in other layers fail immediately and completely with all links removed. This assumption is not true of real interdependent infrastructures that have emergency procedures to buffer against cascades. In this work, we consider a node-to-link failure propagation mechanism and establish "weak" interdependence across layers via a tolerance parameter α which quantifies the likelihood that a node survives when one of its interdependent neighbors fails. Analytical and numerical results show that weak interdependence produces a striking phenomenon: layers at different positions within the multilayer system experience distinct percolation transitions. Especially, layers with high super degree values percolate in an abrupt manner, while those with low super degree values exhibit both continuous and discontinuous transitions. This novel phenomenon we call mixed percolation transitions has significant implications for network robustness. Previous results that do not consider cascade tolerance and layer super degree may be under- or over-estimating the vulnerability of real systems. Moreover, our model reveals how nodal protection activities influence failure dynamics in interdependent, multilayer systems.

12.
Waste Manag ; 27(11): 1648-54, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17098410

RESUMEN

Contaminated surficial sediments in major ports and harbors remain a significant economic liability during routine dredging operations. Numerous beneficial uses have been suggested in recent years that promise reduced sediment management costs concomitant with a productive material use. This manuscript describes the leaching of metals and metalloids from surficial sediments and from controlled low strength material (flowable fill) produced using the estuarine sediments as replacement for sand. Sediments from two locations within the New York/New Jersey Harbor area (Gowanus Canal and Newtown Creek) (USA), were subjected to pH-dependent leaching tests and liquid-to-solid ratio dependent leaching tests. Results indicate that, in general, maximum contaminant levels for drinking water, used here as a benchmark for metals concentrations in leachate, were exceeded only at pH values less than 5 or greater than 9. Leaching as a function of increasing liquid-to-solid ratio demonstrated that pH controlled the observed behavior: unamended sediment leached lower concentrations of all elements except for the oxyanion arsenate. The flowable fill material, despite dilution of the sediment and incorporation into a cementitious matrix, leached higher element concentrations except for arsenic due to the high pH of the material. It was also shown that a much more grossly contaminated material (Newtown Creek) had a very similar leaching behavior to the less contaminated Gowanus Canal material. Speciation calculations demonstrated that dissolved organic carbon plays a significant role in the leaching observed from these estuarine sediments and the flowable fill made with the high organic matter content sediments.


Asunto(s)
Materiales de Construcción , Ambiente , Sedimentos Geológicos/química , Ríos , Administración de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Ácidos , Cobre , Concentración de Iones de Hidrógeno , Plomo , Compuestos Orgánicos , Solubilidad
13.
Nat Nanotechnol ; 12(8): 740-743, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28775358

RESUMEN

Two analytic perspectives on environmental assessment dominate environmental policy and decision-making: risk analysis (RA) and life-cycle assessment (LCA). RA focuses on management of a toxicological hazard in a specific exposure scenario, while LCA seeks a holistic estimation of impacts of thousands of substances across multiple media, including non-toxicological and non-chemically deleterious effects. While recommendations to integrate the two approaches have remained a consistent feature of environmental scholarship for at least 15 years, the current perception is that progress is slow largely because of practical obstacles, such as a lack of data, rather than insurmountable theoretical difficulties. Nonetheless, the emergence of nanotechnology presents a serious challenge to both perspectives. Because the pace of nanomaterial innovation far outstrips acquisition of environmentally relevant data, it is now clear that a further integration of RA and LCA based on dataset completion will remain futile. In fact, the two approaches are suited for different purposes and answer different questions. A more pragmatic approach to providing better guidance to decision-makers is to apply the two methods in parallel, integrating only after obtaining separate results.

14.
Environ Health Perspect ; 125(6): 066001, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28669940

RESUMEN

BACKGROUND: Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. OBJECTIVES: We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. METHODS: A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. RESULTS: We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. CONCLUSIONS: We advance four recommendations: a) engaging the systematic development and evaluation of decision approaches and tools; b) using case studies to advance the integration of decision analysis into alternatives analysis; c) supporting transdisciplinary research; and d) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.


Asunto(s)
Técnicas de Apoyo para la Decisión , Sustancias Peligrosas/toxicidad , Pruebas de Toxicidad/métodos , Toma de Decisiones , Medición de Riesgo/métodos , Ciencia
15.
Sci Rep ; 5: 17277, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26612009

RESUMEN

We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

16.
Integr Environ Assess Manag ; 7(3): 396-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21608108

RESUMEN

The implications of recent catastrophic disasters, including the Fukushima Daiichi nuclear power plant accident, reach well beyond the immediate, direct environmental and human health risks. In a complex coupled system, disruptions from natural disasters and man-made accidents can quickly propagate through a complex chain of networks to cause unpredictable failures in other economic or social networks and other parts of the world. Recent disasters have revealed the inadequacy of a classical risk management approach. This study calls for a new resilience-based design and management paradigm that draws upon the ecological analogues of diversity and adaptation in response to low-probability and high-consequence disruptions.


Asunto(s)
Desastres/prevención & control , Diseño de Equipo/métodos , Arquitectura y Construcción de Instituciones de Salud/métodos , Gestión de Riesgos/métodos , Tormentas Ciclónicas , Combustibles Fósiles , Plantas de Energía Nuclear/instrumentación , Liberación de Radiactividad Peligrosa/prevención & control
17.
Integr Environ Assess Manag ; 7(3): 348-59, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21309075

RESUMEN

The recent investment boom and collapse of the corn ethanol industry calls into question the long-term sustainability of traditional approaches to biofuel technologies. Compared with petroleum-based transportation fuels, biofuel production systems are more closely connected to complex and variable natural systems. Especially as biofeedstock production itself becomes more independent of fossil fuel-based supports, stochasticity will become an increasingly important, inherent feature of biofuel feedstock production systems. Accordingly, a fundamental change in design philosophy is necessary to ensure the long-term viability of the biofuels industry. To respond effectively to unexpected disruptions, the new approach will require systems to be designed for resilience (indicated by diversity, efficiency, cohesion, and adaptability) rather than more narrowly defined measures of efficiency. This paper addresses important concepts in the design of coupled engineering-ecological systems (resistance, resilience, adaptability, and transformability) and examines biofuel conversion technologies from a resilience perspective. Conversion technologies that can accommodate multiple feedstocks and final products are suggested to enhance the diversity and flexibility of the entire industry.


Asunto(s)
Biocombustibles/provisión & distribución , Alimentación Animal/provisión & distribución , Animales , Carbono/química , Ecosistema , Humanos , Industrias
18.
Nat Nanotechnol ; 6(12): 784-7, 2011 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-21963715

RESUMEN

The emergence of nanotechnology has coincided with an increased recognition of the need for new approaches to understand and manage the impact of emerging technologies on the environment and human health. Important elements in these new approaches include life-cycle thinking, public participation and adaptive management of the risks associated with emerging technologies and new materials. However, there is a clear need to develop a framework for linking research on the risks associated with nanotechnology to the decision-making needs of manufacturers, regulators, consumers and other stakeholder groups. Given the very high uncertainties associated with nanomaterials and their impact on the environment and human health, research resources should be directed towards creating the knowledge that is most meaningful to these groups. Here, we present a model (based on multi-criteria decision analysis and a value of information approach) for prioritizing research strategies in a way that is responsive to the recommendations of recent reports on the management of the risk and impact of nanomaterials on the environment and human health.


Asunto(s)
Ambiente , Salud , Nanoestructuras/efectos adversos , Nanotecnología/normas , Toma de Decisiones , Humanos , Nanoestructuras/química , Nanotecnología/métodos , Proyectos de Investigación , Medición de Riesgo
19.
Integr Environ Assess Manag ; 7(3): 360-1, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21608119

RESUMEN

The recent accident at the Fukushima I nuclear power plant in Japan (also known as Fukushima Daiichi) captured the world's attention and re-invigorated concerns about the safety of nuclear power technology. The Editors of Integrated Environmental Assessment and Management invited experts in the field to describe the primary issues associated with the control and release of radioactive materials to the environment, particularly those that are of importance to the health of the human populations and the ecological systems that populate our planet. This collection of invited short commentaries aims to inform on the safety of nuclear power plants damaged by natural disasters and provide a primer on the potential environmental impacts. The intent of these invited commentaries is not to fuel the excitement and fears about the Fukushima Daiichi incident; rather, it is to collect views and comments from some of the world's experts on the broad science and policy challenges raised by this event, and to provide high-level views on the science issues that surround this situation in order to improve our collective ability to avoid or at least minimize the consequences of future events.


Asunto(s)
Contaminación Ambiental , Liberación de Radiactividad Peligrosa , Radioisótopos/toxicidad , Animales , Ecotoxicología , Contaminación Ambiental/análisis , Humanos
20.
Environ Sci Technol ; 43(6): 1718-23, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19368162

RESUMEN

Life cycle impact assessment (LCIA) involves weighing trade-offs between multiple and incommensurate criteria. Current state-of-the-art LCIA tools typically compute an overall environmental score using a linear-weighted aggregation of characterized inventory data that has been normalized relative to total industry, regional, or national emissions. However, current normalization practices risk masking impacts that may be significant within the context of the decision, albeit small relative to the reference data (e.g., total U.S. emissions). Additionally, uncertainty associated with quantification of weights is generally very high. Partly for these reasons, many LCA studies truncate impact assessment at the inventory characterization step, rather than completing normalization and weighting steps. This paper describes a novel approach called stochastic multiattribute life cycle impact assessment (SMA-LCIA) that combines an outranking approach to normalization with stochastic exploration of weight spaces-avoiding some of the drawbacks of current LCIA methods. To illustrate the new approach, SMA-LCIA is compared with a typical LCIA method for crop-based, fossil-based, and electric fuels using the Greenhouse gas Regulated Emissions and Energy Use in Transportation (GREET) model for inventory data and the Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) model for data characterization. In contrast to the typical LCIA case, in which results are dominated by fossil fuel depletion and global warming considerations regardless of criteria weights, the SMA-LCIA approach results in a rank ordering that is more sensitive to decisionmaker preferences. The principal advantage of the SMA-LCIA method is the ability to facilitate exploration and construction of context-specific criteria preferences by simultaneously representing multiple weights spaces and the sensitivity of the rank ordering to uncertain stakeholder values.


Asunto(s)
Fuentes de Energía Bioeléctrica , Conservación de los Recursos Naturales/métodos , Toma de Decisiones , Modelos Teóricos , Vehículos a Motor , Análisis Multivariante , Procesos Estocásticos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA