Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Immunol ; 248: 109213, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566913

RESUMEN

Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor. Lipidomics of nephritic kidneys confirmed ferroptosis. Using nephrotoxic serum, we induced immune complex glomerulonephritis in congenic mice and demonstrate that impaired iron sequestration within the proximal tubules exacerbates ferroptosis. Lupus nephritis patient serum rendered human proximal tubular cells susceptibility to ferroptosis which was inhibited by Liproxstatin-2, a novel ferroptosis inhibitor. Collectively, our findings identify intra-renal ferroptosis as a pathological feature and contributor to tubular injury in human and murine lupus nephritis.


Asunto(s)
Ferroptosis , Enfermedades Renales , Nefritis Lúpica , Humanos , Ratones , Animales , Hierro/metabolismo , Glomérulos Renales/metabolismo , Células Epiteliales/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674924

RESUMEN

In addition to inhibiting renal glucose reabsorption and allowing for glucose excretion, the sodium/glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin may be efficacious in treating various comorbidities associated with type 2 diabetes mellitus (T2DM). The molecular mechanisms by which dapagliflozin exerts its beneficial effects are largely unknown. We hypothesized dapagliflozin treatment in the diabetic kidney alters plasma membrane lipid composition, suppresses extracellular vesicle (EV) release from kidney cells, and disrupts lipid rafts in proximal tubule cells. In order to test this hypothesis, we treated diabetic db/db mice with dapagliflozin (N = 8) or vehicle (N = 8) and performed mass spectrometry-based lipidomics to investigate changes in the concentrations of membrane lipids in the kidney cortex. In addition, we isolated urinary EVs (uEVs) from urine samples collected during the active phase and the inactive phase of the mice and then probed for changes in membrane proteins enriched in the EVs. Multiple triacylglycerols (TAGs) were enriched in the kidney cortex membrane fractions of vehicle-treated diabetic db/db mice, while the levels of multiple phosphatidylethanolamines were significantly higher in similar mice treated with dapagliflozin. EV concentration and size were lesser in the urine samples collected during the inactive phase of dapagliflozin-treated diabetic mice. In cultured mouse proximal tubule cells treated with dapagliflozin, the lipid raft protein caveolin-1 shifted from less dense fractions to more dense sucrose density gradient fractions. Taken together, these results suggest dapagliflozin may regulate lipid-mediated signal transduction in the diabetic kidney.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Fosfatidiletanolaminas/metabolismo , Riñón/metabolismo , Glucosa/metabolismo , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/metabolismo , Corteza Renal/metabolismo , Ratones Endogámicos
3.
J Lipid Res ; 61(3): 275-290, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900315

RESUMEN

Diets high in calories can be used to model metabolic diseases, including obesity and its associated comorbidities, in animals. Drosophila melanogaster fed high-sugar diets (HSDs) exhibit complications of human obesity including hyperglycemia, hyperlipidemia, insulin resistance, cardiomyopathy, increased susceptibility to infection, and reduced longevity. We hypothesize that lipid storage in the high-sugar-fed fly's fat body (FB) reaches a maximum capacity, resulting in the accumulation of toxic lipids in other tissues or lipotoxicity. We took two approaches to characterize tissue-specific lipotoxicity. Ultra-HPLC-MS/MS and MALDI-MS imaging enabled spatial and temporal localization of lipid species in the FB, heart, and hemolymph. Substituent chain length was diet dependent, with fewer odd chain esterified FAs on HSDs in all sample types. By contrast, dietary effects on double bond content differed among organs, consistent with a model where some substituent pools are shared and others are spatially restricted. Both di- and triglycerides increased on HSDs in all sample types, similar to observations in obese humans. Interestingly, there were dramatic effects of sugar feeding on lipid ethers, which have not been previously associated with lipotoxicity. Taken together, we have identified candidate endocrine mechanisms and molecular targets that may be involved in metabolic disease and lipotoxicity.


Asunto(s)
Cuerpo Adiposo/química , Corazón , Hemolinfa/química , Lípidos/análisis , Animales , Cromatografía Líquida de Alta Presión , Drosophila melanogaster , Hipernutrición , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
4.
Biomedicines ; 11(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37239160

RESUMEN

Cathpesin B is a multi-functional protease that plays numerous roles in physiology and pathophysiology. We hypothesized that actin cytoskeleton proteins that are substrates of cathepsin B, various lipids, and kinases that are regulated by lipids would be down-regulated in the kidney of cathepsin B knockout mice. Here, we show by Western blot and densitometric analysis that the expression and proteolysis of the actin cytoskeleton proteins myristoylated alanine-rich C-kinase substrate (MARCKS) and spectrin are significantly reduced in kidney cortex membrane fractions of cathepsin B knockout mice compared to C57B6 wild-type control mice. Lipidomic results show that specific lipids are increased while other lipids, including lysophosphatidylcholine (LPC) species LPC (16:0), LPC (18:0), LPC (18:1), and LPC (18:2), are significantly decreased in membrane fractions of the kidney cortex from Cathepsin B null mice. Protein Kinase C (PKC) activity is significantly lower in the kidney cortex of cathepsin B knockout mice compared to wild-type mice, while calcium/calmodulin-dependent protein kinase II (CaMKII) activity and phospholipase D (PLD) activity are comparable between the two groups. Together, these results provide the first evidence of altered actin cytoskeleton organization, membrane lipid composition, and PKC activity in the kidneys of mice lacking cathepsin B.

5.
Biomolecules ; 13(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671451

RESUMEN

Hypertension may develop before or after the onset of diabetes and it is known to increase the risk of developing diabetic nephropathy. Alpha-1 antitrypsin (AAT) is a multi-functional protein with beneficial effects in various diseases but its role in reducing blood pressure in the diabetic kidney has not been thoroughly studied. Like blood pressure, epithelial sodium channels (ENaC) and its adaptor protein myristoylated alanine-rich C-kinase substrate (MARCKS) are regulated by circadian rhythms. Our hypothesis is that administration of human AAT (hAAT) reduces blood pressure in hypertensive diabetic mice by attenuating membrane expression of ENaC and its association with the actin cytoskeleton. First, we show hAAT administration results in reduced blood pressure in diabetic db/db mice compared to vehicle treatment in both the inactive and active cycles. Western blotting and immunohistochemistry analyses showed a reduction of ENaC and the actin cytoskeleton protein, MARCKS in the kidneys of diabetic db/db mice treated with hAAT compared to vehicle. hAAT treatment resulted in elevated amounts of extracellular vesicles present in the urine of diabetic db/db mice compared to vehicle treatment both in the inactive and active cycles. Multiple hexosylceramides, among other lipid classes increased in urinary EVs released from hAAT treated hypertensive diabetic mice compared to vehicle treated mice. Taken together, these data suggest hAAT treatment could normalize blood pressure in the diabetic kidney in a mechanism involving attenuation of renal ENaC and MARCKS protein expression and possibly ceramide metabolism to hexosylceramide in kidney cells.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Hipertensión , Animales , Humanos , Ratones , Presión Sanguínea , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Ratones Endogámicos , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Canales Epiteliales de Sodio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA