Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunology ; 162(2): 135-144, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32681647

RESUMEN

CD8 T-cells are an essential component of the adaptive immune response accountable for the clearance of virus-infected cells via cytotoxic effector functions. Maintaining a specific metabolic profile is necessary for these T-cells to sustain their effector functions and clear pathogens. When CD8 T-cells are activated via T-cell receptor recognition of viral antigen, they transition from a naïve to an effector state and eventually to a memory phenotype, and their metabolic profiles shift as the cells differentiate to accomidate different metabolic demands. However, in the context of particular chronic viral infections (CVIs), CD8 T-cells can become metabolically dysfunctional in a state known as T-cell exhaustion. In this state, CD8 T-cells exhibit reduced effector functions and are unable to properly control pathogens. Clearing these chronic infections becomes progressively difficult as increasing numbers of the effector T-cells become exhausted. Hence, reversal of this dysfunctional metabolic phenotype is vital when considering potential treatments of these infections and offers the opportunity for novel strategies for the development of therapies against CVIs. In this review we explore research implicating alteration of the metabolic state as a means to reverse CD8 T-cell exhaustion in CVIs. These findings indicate that strategies targeting dysfunctional CD8 T-cell metabolism could prove to be a promising option for successfully treating CVIs.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virosis/inmunología , Inmunidad Adaptativa/inmunología , Animales , Enfermedad Crónica , Humanos , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología
2.
Lab Invest ; 96(10): 1116-27, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27548802

RESUMEN

Removal of excessive melanin from heavily pigmented formalin-fixed paraffin-embedded (FFPE) melanoma tissues is essential for histomorphological and molecular diagnostic assessments. Although there have been efforts to address this issue, current methodologies remain complex and time-consuming, and are not suitable for multiple molecular applications. Herein, we have developed a robust and rapid melanin-bleaching methodology for FFPE tissue specimens. Our approach is based on quick bleaching (15 min) at high temperature (80 °C) with 0.5% diluted hydrogen peroxide (H2O2) in Tris-HCl, PBS, or Tris/Tricine/SDS buffer. Immunostaining for Ki-67 and HMB45 was enhanced by bleaching with 0.5% H2O2 in Tris/Tricine/SDS and Tris-HCl, respectively. In addition to histopathological applications, our approach also facilitates recovery of protein and nucleic acid from archival melanin-rich FFPE tissue sections. Protein extracted from bleached FFPE tissues was compatible with western blotting using anti-human GAPDH and AKT antibodies. Our bleaching condition significantly improved RNA quality compared with unbleached tissues without compromising the yield. Notably, the RNA/DNA obtained from bleached tissues was suitable for end point PCR and real-time quantitative RT-PCR. In conclusion, this improved melanin-bleaching method enhances and simplifies immunostaining procedures, and facilitates the use of melanin-rich FFPE tissues for histomorphological and PCR amplification-based molecular assays.


Asunto(s)
Técnicas Histológicas , Calor , Peróxido de Hidrógeno , Melaninas , Formaldehído , Humanos , Adhesión en Parafina
3.
BMC Cancer ; 16: 448, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27402115

RESUMEN

BACKGROUND: The annexins (ANXs) have diverse roles in tumor development and progression, however, their clinical significance in cervical cancer has not been elucidated. The present study was to investigate the clinical significance of annexin A2 (ANXA2) and annexin A4 (ANXA4) expression in cervical cancer. METHODS: ANXA2 and ANXA4 immunohistochemical staining were performed on a cervical cancer tissue microarray consisting of 46 normal cervical epithelium samples and 336 cervical cancer cases and compared the data with clinicopathological variables, including the survival of cervical cancer patients. RESULTS: ANXA2 expression was lower in cancer tissue (p = 0.002), whereas ANXA4 staining increased significantly in cancer tissues (p < 0.001). ANXA2 expression was more prominent in squamous cell carcinoma (p < 0.001), whereas ANXA4 was more highly expressed in adeno/adenosquamous carcinoma (p < 0.001). ANXA2 overexpression was positively correlated with advanced cancer phenotypes, whereas ANXA4 expression was associated with resistance to radiation with or without chemotherapy (p = 0.029). Notably, high ANXA2 and ANXA4 expression was significantly associated with shorter disease-free survival (p = 0.004 and p = 0.033, respectively). Multivariate analysis indicated that ANXA2+ (HR = 2.72, p = 0.003) and ANXA2+/ANXA4+ (HR = 2.69, p = 0.039) are independent prognostic factors of disease-free survival in cervical cancer. Furthermore, a random survival forest model using combined ANXA2, ANXA4, and clinical variables resulted in improved predictive power (mean C-index, 0.76) compared to that of clinical-variable-only models (mean C-index, 0.70) (p = 0.006). CONCLUSIONS: These findings indicate that detecting ANXA2 and ANXA4 expression may aid the evaluation of cervical carcinoma prognosis.


Asunto(s)
Anexina A2/metabolismo , Anexina A4/metabolismo , Carcinoma Adenoescamoso/patología , Carcinoma de Células Escamosas/patología , Neoplasias del Cuello Uterino/patología , Adulto , Biomarcadores de Tumor/metabolismo , Carcinoma Adenoescamoso/mortalidad , Carcinoma de Células Escamosas/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia , Análisis de Matrices Tisulares , Neoplasias del Cuello Uterino/mortalidad
4.
Cancer Immunol Res ; 12(7): 822-839, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38739030

RESUMEN

Cytotoxic T lymphocytes (CTL) are pivotal in combating cancer, yet their efficacy is often hindered by the immunosuppressive tumor microenvironment, resulting in CTL exhaustion. This study investigates the role of interleukin-3 (IL3) in orchestrating antitumor immunity through CTL modulation. We found that intratumoral CTLs exhibited a progressive decline in IL3 production, which was correlated with impaired cytotoxic function. Augmenting IL3 supplementation, through intraperitoneal administration of recombinant IL3, IL3-expressing tumor cells, or IL3-engineered CD8+ T cells, conferred protection against tumor progression, concomitant with increased CTL activity. CTLs were critical for this therapeutic efficacy as IL3 demonstrated no impact on tumor growth in Rag1 knockout mice or following CD8+ T-cell depletion. Rather than acting directly, CTL-derived IL3 exerted its influence on basophils, concomitantly amplifying antitumor immunity within CTLs. Introducing IL3-activated basophils retarded tumor progression, whereas basophil depletion diminished the effectiveness of IL3 supplementation. Furthermore, IL3 prompted basophils to produce IL4, which subsequently elevated CTL IFNγ production and viability. Further, the importance of basophil-derived IL4 was evident from the absence of benefits of IL3 supplementation in IL4 knockout tumor-bearing mice. Overall, this research has unveiled a role for IL3-mediated CTL-basophil cross-talk in regulating antitumor immunity and suggests harnessing IL3 sustenance as a promising approach for optimizing and enhancing cancer immunotherapy. See related Spotlight, p. 798.


Asunto(s)
Interleucina-3 , Ratones Noqueados , Linfocitos T Citotóxicos , Animales , Ratones , Linfocitos T Citotóxicos/inmunología , Interleucina-3/metabolismo , Interleucina-3/inmunología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Comunicación Celular/inmunología , Humanos
5.
PLoS One ; 19(3): e0299595, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451972

RESUMEN

OBJECTIVE: Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS: This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS: PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS: These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.


Asunto(s)
Desoxiglucosa , Epilepsia , Ratones , Animales , Desoxiglucosa/farmacología , Desoxiglucosa/metabolismo , Ratones Endogámicos C57BL , Glucosa/metabolismo , Perfilación de la Expresión Génica
6.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915519

RESUMEN

Despite their widespread impact on human health there are no approved drugs for combating alphavirus infections. The heterocyclic ß-aminomethyl vinyl sulfone RA-0002034 (1a) is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad spectrum antiviral activity. Analogs of 1a that varied each of three regions of the molecule were synthesized to establish structure-activity relationships for inhibition of Chikungunya (CHIKV) nsP2 protease and viral replication. The covalent warhead was highly sensitive to modifications of the sulfone or vinyl substituents. However, numerous alterations to the core 5-membered heterocycle and its aryl substituent were well tolerated and several analogs were identified that enhanced CHIKV nsP2 binding. For example, the 4-cyanopyrazole analog 8d exhibited a kinact /Ki ratio >10,000 M-1s-1. 3-Arylisoxazole was identified an isosteric replacement for the 5-membered heterocycle, which circumvented the intramolecular cyclization that complicated the synthesis of pyrazole-based inhibitors like 1a. The accumulated structure-activity data was used to build a ligand-based model of the enzyme active site, which can be used to guide the design of covalent nsP2 protease inhibitors as potential therapeutics against alphaviruses.

7.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38562906

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement: Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.

8.
iScience ; 26(9): 107487, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636066

RESUMEN

Aberrant metabolic demand is observed in immune/inflammatory disorders, yet the role in pathogenesis remains unclear. Here, we discover that in lupus, activated B cells, including germinal center B (GCB) cells, have remarkably high glycolytic requirement for survival over T cell populations, as demonstrated by increased metabolic activity in lupus-activated B cells compared to immunization-induced cells. The augmented reliance on glucose oxidation makes GCB cells vulnerable to mitochondrial ROS-induced oxidative stress and apoptosis. Short-term glycolysis inhibition selectively reduces pathogenic activated B in lupus-prone mice, extending their lifespan, without affecting T follicular helper cells. Particularly, BCMA-expressing GCB cells rely heavily on glucose oxidation. Depleting BCMA-expressing activated B cells with APRIL-based CAR-T cells significantly prolongs the lifespan of mice with severe autoimmune disease. These results reveal that glycolysis-dependent activated B and GCB cells, especially those expressing BCMA, are potentially key lupus mediators, and could be targeted to improve disease outcomes.

9.
bioRxiv ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37162857

RESUMEN

OBJECTIVE: Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS: This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS: PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS: These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.

10.
J Histochem Cytochem ; 66(2): 121-135, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29125916

RESUMEN

The lack of standardization of tissue handling and processing hinders the development and validation of new biomarkers in research and clinical settings. We compared the histomorphology and the quality and quantity of biomolecules in paraffin-embedded mouse tissues, followed by fixation with neutral buffered formalin (NBF), 70% ethanol, and buffered ethanol (BE70) fixative. The quality of the histomorphology and immunohistochemistry in BE70 was relatively time-independent, whereas those in NBF rapidly decreased after 1 week of fixation. Protein recovered from tissue fixed in 70% ethanol and BE70 was compatible with Western blot and protein array using AKT and GAPDH antibodies, regardless of the fixation time. In addition, the quality and quantity of RNA extracted from tissue in ethanol-based fixative showed minimal changes from 4 hr to 6 months, whereas NBF had a dramatic detrimental change in RNA quality after 1 week of fixation. Furthermore, ethanol-based fixative offers a superior DNA template for PCR amplification-based molecular assays than NBF. In conclusion, coagulative, ethanol-based fixatives show a broader time spectrum than the aldehyde crosslinking fixative NBF in their histomorphological features and the quantity and quality of the biomolecules from paraffin-embedded tissue, and they may facilitate the use of fixative-fixed paraffin-embedded tissues in research and clinical laboratories, avoiding overfixation.


Asunto(s)
Etanol/química , Fijadores/química , Formaldehído/química , Fijación del Tejido/métodos , Animales , Tampones (Química) , ADN/análisis , Femenino , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos BALB C , Adhesión en Parafina/métodos , Proteínas/análisis , ARN/análisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA