Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(51): e2209816119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508668

RESUMEN

Caused by Yersinia pestis, plague ravaged the world through three known pandemics: the First or the Justinianic (6th-8th century); the Second (beginning with the Black Death during c.1338-1353 and lasting until the 19th century); and the Third (which became global in 1894). It is debatable whether Y. pestis persisted in European wildlife reservoirs or was repeatedly introduced from outside Europe (as covered by European Union and the British Isles). Here, we analyze environmental data (soil characteristics and climate) from active Chinese plague reservoirs to assess whether such environmental conditions in Europe had ever supported "natural plague reservoirs". We have used new statistical methods which are validated through predicting the presence of modern plague reservoirs in the western United States. We find no support for persistent natural plague reservoirs in either historical or modern Europe. Two factors make Europe unfavorable for long-term plague reservoirs: 1) Soil texture and biochemistry and 2) low rodent diversity. By comparing rodent communities in Europe with those in China and the United States, we conclude that a lack of suitable host species might be the main reason for the absence of plague reservoirs in Europe today. These findings support the hypothesis that long-term plague reservoirs did not exist in Europe and therefore question the importance of wildlife rodent species as the primary plague hosts in Europe.


Asunto(s)
Peste , Yersinia pestis , Humanos , Peste/epidemiología , Peste/historia , Europa (Continente) , Pandemias/historia , Clima , Suelo , Reservorios de Enfermedades
2.
J Bacteriol ; 206(9): e0017324, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158280

RESUMEN

The adaptation of Yersinia pestis, the flea-borne plague agent, to fluctuating environmental conditions is essential for the successful colonization of the flea vector. A previous comparative transcriptomic analysis showed that the Cpx pathway of Y. pestis is up-regulated in infected fleas. The CpxAR two-component system is a component of the envelope stress response and is critical for maintaining the integrity of the cell. Here, a phenotypic screening revealed a survival defect of the cpxAR mutant to oxidative stress and copper. The measured copper concentration in the digestive tract contents of fed fleas increased fourfold during the digestive process. By direct analysis of phosphorylation of CpxR by a Phos-Tag gel approach, we demonstrated that biologically relevant concentrations of copper triggered the system. Then, a competitive challenge highlighted the role of the CpxAR system in bacterial fitness during flea infection. Lastly, an in vitro sequential exposure to copper and then H2O2 to mimic the flea suggests a model in which, within the insect digestive tract, the CpxAR system would be triggered by copper, establishing an oxidative stress response. IMPORTANCE: The bacterium Yersinia pestis is the agent of flea-borne plague. Our knowledge of the mechanisms used by the plague bacillus to infect the flea vector is limited. The up-regulation of the envelope stress response under the control of the Cpx signaling pathway was previously shown in a transcriptomic study. Here, our in vivo and in vitro approaches suggest a model in which Y. pestis uses the CpxAR phosphorelay system to sense and respond to the copper present in the flea gut, thereby optimizing the flea gut colonization. In other words, the system is essential for bacterial fitness in the flea.


Asunto(s)
Proteínas Bacterianas , Tracto Gastrointestinal , Regulación Bacteriana de la Expresión Génica , Transducción de Señal , Siphonaptera , Yersinia pestis , Animales , Yersinia pestis/genética , Yersinia pestis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Siphonaptera/microbiología , Tracto Gastrointestinal/microbiología , Peste/microbiología , Cobre/metabolismo , Cobre/farmacología , Estrés Oxidativo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Insectos Vectores/microbiología , Proteínas Quinasas
3.
Appl Environ Microbiol ; 89(4): e0209122, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36939324

RESUMEN

Yersinia pestis (the agent of flea-borne plague) must obstruct the flea's proventriculus to maintain transmission to a mammalian host. To this end, Y. pestis must consolidate a mass that entrapped Y. pestis within the proventriculus very early after its ingestion. We developed a semiautomated fluorescent image analysis method and used it to monitor and compare colonization of the flea proventriculus by a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Our data suggested that flea blockage results primarily from the replication of Y. pestis trapped in the anterior half of the proventriculus. However, consolidation of the bacteria-entrapping mass and colonization of the entire proventricular lumen increased the likelihood of flea blockage. The data also showed that consolidation of the bacterial mass is not a prerequisite for colonization of the proventriculus but allowed Y. pestis to maintain itself in a large flea population for an extended period of time. Taken as the whole, the data suggest that a strategy targeting bacterial mass consolidation could significantly reduce the likelihood of Y. pestis being transmitted by fleas (due to gut blockage), but also the possibility of using fleas as a long-term reservoir. IMPORTANCE Yersinia pestis (the causative agent of plague) is one of the deadliest bacterial pathogens. It circulates primarily among rodent populations and their fleas. Better knowledge of the mechanisms leading to the flea-borne transmission of Y. pestis is likely to generate strategies for controlling or even eradicating this bacillus. It is known that Y. pestis obstructs the flea's foregut so that the insect starves, frantically bites its mammalian host, and regurgitates Y. pestis at the bite site. Here, we developed a semiautomated fluorescent image analysis method and used it to document and compare foregut colonization and disease progression in fleas infected with a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Overall, our data provided new insights into Y. pestis' obstruction of the proventriculus for transmission but also the ecology of plague.


Asunto(s)
Peste , Siphonaptera , Yersinia pestis , Animales , Siphonaptera/microbiología , Peste/microbiología , Proventrículo , Microscopía , Insectos Vectores/microbiología , Mamíferos
4.
PLoS Pathog ; 16(4): e1008440, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32294143

RESUMEN

In flea-borne plague, blockage of the flea's foregut by Yersinia pestis hastens transmission to the mammalian host. Based on microscopy observations, we first suggest that flea blockage results from primary infection of the foregut and not from midgut colonization. In this model, flea infection is characterized by the recurrent production of a mass that fills the lumen of the proventriculus and encompasses a large number of Y. pestis. This recurrence phase ends when the proventricular cast is hard enough to block blood ingestion. We further showed that ymt (known to be essential for flea infection) is crucial for cast production, whereas the hmsHFRS operon (known to be essential for the formation of the biofilm that blocks the gut) is needed for cast consolidation. By screening a library of mutants (each lacking a locus previously known to be upregulated in the flea gut) for biofilm formation, we found that rpiA is important for flea blockage but not for colonization of the midgut. This locus may initially be required to resist toxic compounds within the proventricular cast. However, once the bacterium has adapted to the flea, rpiA helps to form the biofilm that consolidates the proventricular cast. Lastly, we used genetic techniques to demonstrate that ribose-5-phosphate isomerase activity (due to the recent gain of a second copy of rpiA (y2892)) accentuated blockage but not midgut colonization. It is noteworthy that rpiA is an ancestral gene, hmsHFRS and rpiA2 were acquired by the recent ancestor of Y. pestis, and ymt was acquired by Y. pestis itself. Our present results (i) highlight the physiopathological and molecular mechanisms leading to flea blockage, (ii) show that the role of a gene like rpiA changes in space and in time during an infection, and (iii) emphasize that evolution is a gradual process punctuated by sudden jumps.


Asunto(s)
Insectos Vectores/microbiología , Peste/transmisión , Siphonaptera/microbiología , Yersinia pestis/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Sistema Digestivo/microbiología , Femenino , Humanos , Insectos Vectores/fisiología , Masculino , Ratones , Operón , Peste/microbiología , Siphonaptera/fisiología , Yersinia pestis/genética
5.
Arch Microbiol ; 204(1): 11, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878588

RESUMEN

The plague agent Yersinia pestis mainly spreads among mammalian hosts and their associated fleas. Production of a successful mammal-flea-mammal life cycle implies that Y. pestis senses and responds to distinct cues in both host and vector. Among these cues, osmolarity is a fundamental parameter. The plague bacillus lives in a tightly regulated environment in the mammalian host, while osmolarity fluctuates in the flea gut (300-550 mOsM). Here, we review the mechanisms that enable Y. pestis to perceive fluctuations in osmolarity, as well as genomic plasticity and physiological adaptation of the bacterium to this stress.


Asunto(s)
Peste , Siphonaptera , Yersinia pestis , Adaptación Fisiológica , Animales , Insectos Vectores , Yersinia pestis/genética
7.
Mol Microbiol ; 112(5): 1471-1482, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424585

RESUMEN

The flea's lumen gut is a poorly documented environment where the agent of flea-borne plague, Yersinia pestis, must replicate to produce a transmissible infection. Here, we report that both the acidic pH and osmolarity of the lumen's contents display simple harmonic oscillations with different periods. Since an acidic pH and osmolarity are two of three known stimuli of the OmpR-EnvZ two-component system in bacteria, we investigated the role and function of this Y. pestis system in fleas. By monitoring the in vivo expression pattern of three OmpR-EnvZ-regulated genes, we concluded that the flea gut environment triggers OmpR-EnvZ. This activation was not, however, correlated with changes in pH and osmolarity but matched the pattern of nutrient depletion (the third known stimulus for OmpR-EnvZ). Lastly, we found that the OmpR-EnvZ and the OmpF porin are needed to produce the biofilm that ultimately obstructs the flea's gut and thus hastens the flea-borne transmission of plague. Taken as a whole, our data suggest that the flea gut is a complex, fluctuating environment in which Y. pestis senses nutrient depletion via OmpR-EnvZ. Once activated, the latter triggers a molecular program (including at least OmpF) that produces the biofilm required for efficient plague transmission.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Peste/transmisión , Siphonaptera/microbiología , Transactivadores/metabolismo , Yersinia pestis/fisiología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Activación Enzimática/genética , Nutrientes/deficiencia , Peste/microbiología , Porinas/genética , Porinas/metabolismo , Estómago/microbiología , Estómago/fisiología , Transactivadores/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidad
9.
J Antimicrob Chemother ; 71(10): 2874-82, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27330072

RESUMEN

OBJECTIVES: Inhibitors of uridine diphosphate-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC, which catalyses the first, irreversible step in lipid A biosynthesis) are a promising new class of antibiotics against Gram-negative bacteria. The objectives of the present study were to: (i) compare the antibiotic activities of three LpxC inhibitors (LPC-058, LPC-011 and LPC-087) and the reference inhibitor CHIR-090 against Gram-negative bacilli (including MDR and XDR isolates); and (ii) investigate the effect of combining these inhibitors with conventional antibiotics. METHODS: MICs were determined for 369 clinical isolates (234 Enterobacteriaceae and 135 non-fermentative Gram-negative bacilli). Time-kill assays with LPC-058 were performed on four MDR/XDR strains, including Escherichia coli producing CTX-M-15 ESBL and Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii producing KPC-2, VIM-1 and OXA-23 carbapenemases, respectively. RESULTS: LPC-058 was the most potent antibiotic and displayed the broadest spectrum of antimicrobial activity, with MIC90 values for Enterobacteriaceae, P. aeruginosa, Burkholderia cepacia and A. baumannii of 0.12, 0.5, 1 and 1 mg/L, respectively. LPC-058 was bactericidal at 1× or 2× MIC against CTX-M-15, KPC-2 and VIM-1 carbapenemase-producing strains and bacteriostatic at ≤4× MIC against OXA-23 carbapenemase-producing A. baumannii. Combinations of LPC-058 with ß-lactams, amikacin and ciprofloxacin were synergistic against these strains, albeit in a species-dependent manner. LPC-058's high efficacy was attributed to the presence of the difluoromethyl-allo-threonyl head group and a linear biphenyl-diacetylene tail group. CONCLUSIONS: These in vitro data highlight the therapeutic potential of the new LpxC inhibitor LPC-058 against MDR/XDR strains and set the stage for subsequent in vivo studies.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Treonina/análogos & derivados , Acinetobacter baumannii/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , Farmacorresistencia Bacteriana Múltiple , Enterobacteriaceae/enzimología , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/efectos de los fármacos , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/patogenicidad , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Treonina/farmacología , beta-Lactamasas/biosíntesis
10.
PLoS Pathog ; 10(3): e1004029, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675805

RESUMEN

Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, "per-pool" screening method that we have developed. Our data showed that in addition to genes involved in physiological adaptation and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site--probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Peste/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidad , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/microbiología , Ratas , Virulencia
11.
Infect Immun ; 83(9): 3638-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150539

RESUMEN

The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥ 37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary.


Asunto(s)
Proteínas Bacterianas/genética , Evolución Molecular , Yersinia pestis/patogenicidad , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Animales , Western Blotting , Modelos Animales de Enfermedad , Eliminación de Gen , Glucanos/biosíntesis , Glucanos/genética , Ratones , Operón/genética , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Infect Immun ; 83(5): 2053-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25754199

RESUMEN

Bacterial superantigens (SAgs) are immunostimulatory toxins that induce acute diseases mainly through the massive release of inflammatory cytokines. Yersinia pseudotuberculosis is the only Gram-negative bacterium known to produce a SAg (Y. pseudotuberculosis-derived mitogen [YPM]). This SAg binds major histocompatibility complex class II molecules on antigen-presenting cells and T cell receptors (TcR) bearing the variable region Vß3, Vß9, Vß13.1, or Vß13.2 (in humans) and Vß7 or Vß8 (in mice). We have previously shown that YPM exacerbates the virulence of Y. pseudotuberculosis in mice. With a view to understanding the mechanism of YPM's toxicity, we compared the immune response in BALB/c mice infected with a YPM-producing Y. pseudotuberculosis or the corresponding isogenic, SAg-deficient mutant. Five days after infection, we observed strong CD4(+) Vß7(+) T cell expansion and marked interleukin-4 (IL-4) production in mice inoculated with SAg-producing Y. pseudotuberculosis. These phenomena were correlated with the activation of ypm gene transcription in liver and spleen. A transcriptomic analysis revealed that the presence of YPM also increased expression of granzyme and perforin genes in the host's liver and spleen. This expression was attributed to a CD4(+) T cell subset, rather than to natural killer T (NKT) cells that display a TcR with a Vß region that is potentially recognized by YPM. Increased production of cytotoxic molecules was correlated with hepatotoxicity, as demonstrated by an increase in plasma alanine aminotransferase activity. Our results demonstrate that YPM activates a potentially hepatotoxic CD4(+) T cell population.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Granzimas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Superantígenos/inmunología , Yersinia pseudotuberculosis/inmunología , Animales , Perfilación de la Expresión Génica , Hígado/inmunología , Hígado/patología , Ratones Endogámicos BALB C , Bazo/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/microbiología
13.
J Infect Dis ; 210(9): 1367-75, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24813471

RESUMEN

Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Peste/microbiología , Yersinia pestis/fisiología , Animales , Proteínas del Sistema Complemento/inmunología , Femenino , Inmunidad Innata , Macrófagos/microbiología , Ratones , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad
14.
J Bacteriol ; 196(21): 3712-23, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25112480

RESUMEN

The mechanisms involved in the virulence of Yersinia pestis, the plague pathogen, are not fully understood. In previous research, we found that a Y. pestis mutant lacking the HicB3 (YPO3369) putative orphan antitoxin was attenuated for virulence in a murine model of bubonic plague. Toxin-antitoxin systems (TASs) are widespread in prokaryotes. Most bacterial species possess many TASs of several types. In type II TASs, the toxin protein is bound and neutralized by its cognate antitoxin protein in the cytoplasm. Here we identify the hicA3 gene encoding the toxin neutralized by HicB3 and show that HicA3-HicB3 constitutes a new functional type II TAS in Y. pestis. Using biochemical and mutagenesis-based approaches, we demonstrate that the HicA3 toxin is an RNase with a catalytic histidine residue. HicB3 has two functions: it sequesters and neutralizes HicA3 by blocking its active site, and it represses transcription of the hicA3B3 operon. Gel shift assays and reporter fusion experiments indicate that the HicB3 antitoxin binds to two operators in the hicA3B3 promoter region. We solved the X-ray structures of HicB3 and the HicA3-HicB3 complex; thus, we present the first crystal structure of a TA complex from the HicAB family. HicB3 forms a tetramer that can bind two HicA3 toxin molecules. HicA3 is monomeric and folds as a double-stranded-RNA-binding domain. The HicB3 N-terminal domain occludes the HicA3 active site, whereas its C-terminal domain folds as a ribbon-helix-helix DNA-binding motif.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Yersinia pestis/metabolismo , Animales , Antitoxinas/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Composición de Base , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Peste/microbiología , Regiones Promotoras Genéticas , Conformación Proteica , Virulencia , Yersinia pestis/genética , Yersinia pestis/patogenicidad
15.
J Infect Dis ; 207(10): 1535-43, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23402825

RESUMEN

BACKGROUND: Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. METHODS: Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. RESULTS: MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. CONCLUSIONS: Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Inmunidad Innata , Muramidasa/antagonistas & inhibidores , Factores de Virulencia/genética , Yersinia pestis/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Sangre/inmunología , Sangre/microbiología , Bovinos , Línea Celular , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Evolución Molecular , Femenino , Eliminación de Gen , Humanos , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Muramidasa/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiología , Periplasma/química , Fagocitos/metabolismo , Fagocitos/microbiología , Peste/inmunología , Peste/microbiología , Peste/patología , Ratas , Ratas Endogámicas BN , Albúmina Sérica Bovina/química , Virulencia , Factores de Virulencia/metabolismo , Yersinia pestis/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Infecciones por Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/microbiología , Infecciones por Yersinia pseudotuberculosis/patología
16.
Artículo en Inglés | MEDLINE | ID: mdl-37602146

RESUMEN

Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.

17.
Sci Transl Med ; 15(708): eadf5668, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556556

RESUMEN

The UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase LpxC is an essential enzyme in the biosynthesis of lipid A, the outer membrane anchor of lipopolysaccharide and lipooligosaccharide in Gram-negative bacteria. The development of LpxC-targeting antibiotics toward clinical therapeutics has been hindered by the limited antibiotic profile of reported non-hydroxamate inhibitors and unexpected cardiovascular toxicity observed in certain hydroxamate and non-hydroxamate-based inhibitors. Here, we report the preclinical characterization of a slow, tight-binding LpxC inhibitor, LPC-233, with low picomolar affinity. The compound is a rapid bactericidal antibiotic, unaffected by established resistance mechanisms to commercial antibiotics, and displays outstanding activity against a wide range of Gram-negative clinical isolates in vitro. It is orally bioavailable and efficiently eliminates infections caused by susceptible and multidrug-resistant Gram-negative bacterial pathogens in murine soft tissue, sepsis, and urinary tract infection models. It displays exceptional in vitro and in vivo safety profiles, with no detectable adverse cardiovascular toxicity in dogs at 100 milligrams per kilogram. These results establish the feasibility of developing oral LpxC-targeting antibiotics for clinical applications.


Asunto(s)
Bacterias Gramnegativas , Lípido A , Animales , Ratones , Perros , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/química
18.
PLoS Pathog ; 6(2): e1000783, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20195507

RESUMEN

Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37 degrees C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.


Asunto(s)
Biopelículas , Inmunidad Innata/genética , Insectos Vectores/genética , Siphonaptera/parasitología , Yersinia pestis/fisiología , Yersinia pestis/patogenicidad , Adaptación Fisiológica , Animales , Expresión Génica , Perfilación de la Expresión Génica , Genes Bacterianos , Insectos Vectores/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
J Immunol ; 185(2): 1177-85, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20566828

RESUMEN

In adaptive immunity, Th17 lymphocytes produce the IL-17 and IL-22 cytokines that stimulate mucosal antimicrobial defenses and tissue repair. In this study, we observed that the TLR5 agonist flagellin induced swift and transient transcription of genes encoding IL-17 and IL-22 in lymphoid, gut, and lung tissues. This innate response also temporarily enhanced the expression of genes associated with the antimicrobial Th17 signature. The source of the Th17-related cytokines was identified as novel populations of CD3(neg)CD127(+) immune cells among which CD4-expressing cells resembling lymphoid tissue inducer cells. We also demonstrated that dendritic cells are essential for expression of Th17-related cytokines and so for stimulation of innate cells. These data define that TLR-induced activation of CD3(neg)CD127(+) cells and production of Th17-related cytokines may be crucial for the early defenses against pathogen invasion of host tissues.


Asunto(s)
Interleucina-17/inmunología , Interleucinas/inmunología , Membrana Mucosa/inmunología , Transducción de Señal/inmunología , Bazo/inmunología , Receptor Toll-Like 5/inmunología , Animales , Complejo CD3/genética , Complejo CD3/inmunología , Complejo CD3/metabolismo , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Flagelina/farmacología , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Íleon/efectos de los fármacos , Íleon/inmunología , Íleon/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Subunidad alfa del Receptor de Interleucina-7/genética , Subunidad alfa del Receptor de Interleucina-7/inmunología , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Membrana Mucosa/citología , Membrana Mucosa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Bazo/citología , Bazo/metabolismo , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Interleucina-22
20.
Cell Microbiol ; 12(8): 1108-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20180800

RESUMEN

Yersinia pseudotuberculosis is able to replicate inside macrophages. However, the intracellular trafficking of the pathogen after its entry into the macrophage remains poorly understood. Using in vitro infected bone marrow-derived macrophages, we show that Y. pseudotuberculosis activates the autophagy pathway. Host cell autophagosomes subverted by bacteria do not become acidified and sustain bacteria replication. Moreover, we report that autophagy inhibition correlated with bacterial trafficking inside an acidic compartment. This study indicates that Y. pseudotuberculosis hijacks the autophagy pathway for its replication and also opens up new opportunities for deciphering the molecular basis of the host cell signalling response to intracellular Yersinia infection.


Asunto(s)
Autofagia , Macrófagos/microbiología , Fagosomas/microbiología , Yersinia pseudotuberculosis/patogenicidad , Animales , Femenino , Evasión Inmune , Ratones , Ratones Endogámicos BALB C , Yersinia pseudotuberculosis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA