RESUMEN
Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteinopatías TDP-43 , Empalme Alternativo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Codón sin Sentido , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Proteínas del Tejido Nervioso , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer.
Asunto(s)
Adenocarcinoma/genética , Antineoplásicos/uso terapéutico , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Tasa de Mutación , Proteínas de Neoplasias/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anciano , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Biología Computacional , Variaciones en el Número de Copia de ADN , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Esófago/metabolismo , Esófago/patología , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Proteínas de Neoplasias/metabolismo , Mutación Puntual , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Factores de TiempoRESUMEN
OBJECTIVE: Current strategies to guide selection of neoadjuvant therapy in oesophageal adenocarcinoma (OAC) are inadequate. We assessed the ability of a DNA damage immune response (DDIR) assay to predict response following neoadjuvant chemotherapy in OAC. DESIGN: Transcriptional profiling of 273 formalin-fixed paraffin-embedded prechemotherapy endoscopic OAC biopsies was performed. All patients were treated with platinum-based neoadjuvant chemotherapy and resection between 2003 and 2014 at four centres in the Oesophageal Cancer Clinical and Molecular Stratification consortium. CD8 and programmed death ligand 1 (PD-L1) immunohistochemical staining was assessed in matched resection specimens from 126 cases. Kaplan-Meier and Cox proportional hazards regression analysis were applied according to DDIR status for recurrence-free survival (RFS) and overall survival (OS). RESULTS: A total of 66 OAC samples (24%) were DDIR positive with the remaining 207 samples (76%) being DDIR negative. DDIR assay positivity was associated with improved RFS (HR: 0.61; 95% CI 0.38 to 0.98; p=0.042) and OS (HR: 0.52; 95% CI 0.31 to 0.88; p=0.015) following multivariate analysis. DDIR-positive patients had a higher pathological response rate (p=0.033), lower nodal burden (p=0.026) and reduced circumferential margin involvement (p=0.007). No difference in OS was observed according to DDIR status in an independent surgery-alone dataset.DDIR-positive OAC tumours were also associated with the presence of CD8+ lymphocytes (intratumoural: p<0.001; stromal: p=0.026) as well as PD-L1 expression (intratumoural: p=0.047; stromal: p=0.025). CONCLUSION: The DDIR assay is strongly predictive of benefit from DNA-damaging neoadjuvant chemotherapy followed by surgical resection and is associated with a proinflammatory microenvironment in OAC.
Asunto(s)
Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Antineoplásicos/uso terapéutico , Daño del ADN/inmunología , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/terapia , Esofagectomía , Terapia Neoadyuvante , Adenocarcinoma/mortalidad , Anciano , Antígeno B7-H1 , Linfocitos T CD8-positivos , Quimioterapia Adyuvante , Supervivencia sin Enfermedad , Neoplasias Esofágicas/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Tasa de Supervivencia , Resultado del TratamientoRESUMEN
Cancers occurring at the gastroesophageal junction (GEJ) are classified as predominantly esophageal or gastric, which is often difficult to decipher. We hypothesized that the transcriptomic profile might reveal molecular subgroups which could help to define the tumor origin and behavior beyond anatomical location. The gene expression profiles of 107 treatment-naïve, intestinal type, gastroesophageal adenocarcinomas were assessed by the Illumina-HTv4.0 beadchip. Differential gene expression (limma), unsupervised subgroup assignment (mclust) and pathway analysis (gage) were undertaken in R statistical computing and results were related to demographic and clinical parameters. Unsupervised assignment of the gene expression profiles revealed three distinct molecular subgroups, which were not associated with anatomical location, tumor stage or grade (p > 0.05). Group 1 was enriched for pathways involved in cell turnover, Group 2 was enriched for metabolic processes and Group 3 for immune-response pathways. Patients in group 1 showed the worst overall survival (p = 0.019). Key genes for the three subtypes were confirmed by immunohistochemistry. The newly defined intrinsic subtypes were analyzed in four independent datasets of gastric and esophageal adenocarcinomas with transcriptomic data available (RNAseq data: OCCAMS cohort, n = 158; gene expression arrays: Belfast, n = 63; Singapore, n = 191; Asian Cancer Research Group, n = 300). The subgroups were represented in the independent cohorts and pooled analysis confirmed the prognostic effect of the new subtypes. In conclusion, adenocarcinomas at the GEJ comprise three distinct molecular phenotypes which do not reflect anatomical location but rather inform our understanding of the key pathways expressed.
Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Unión Esofagogástrica/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Humanos , Inmunohistoquímica/métodos , Fenotipo , Pronóstico , Estudios ProspectivosRESUMEN
Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an understanding of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms) is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at more involved temporal interpretation have been made in recent years, but awareness of the available resources is still limited within the scientific community. Here, we review some advances in biological visualization of time-driven processes and consider how they aid data analysis and interpretation.
Asunto(s)
Biología , Tiempo , Programas InformáticosRESUMEN
BACKGROUND: Lapatinib, a dual EGFR and HER2 inhibitor has shown disappointing results in clinical trials of metastatic oesophago-gastric adenocarcinomas (OGAs), and in vitro studies suggest that MET, IGFR, and HER3 confer resistance. This trial applied Lapatinib in the curative neoadjuvant setting and investigated the feasibility and utility of additional endoscopy and biopsy for assessment of resistance mechanisms ex vivo and in vivo. METHODS: Patients with HER2 overexpressing OGA were treated for 10 days with Lapatinib monotherapy, and then in combination with three cycles of Oxaliplatin and Capecitabine before surgery. Endoscopic samples were taken for molecular analysis at: baseline including for ex vivo culture +/- Lapatinib to predict in vivo response, post-Lapatinib monotherapy and at surgery. Immunohistochemistry (IHC) and proteomic analysis was performed to assess cell kinetics and signalling activity. RESULTS: The trial closed early (n=10) due to an anastomotic leak in two patients for which a causative effect of Lapatinib could not be excluded. The reduction in Phosphorylated-HER2 (P-HER2) and P-EGFR in the ex vivo-treated biopsy demonstrated good correlation with the in vivo response at day 10. Proteomic analysis pre and post-Lapatinib demonstrated target inhibition (P-ERBB2, P-EGFR, P-PI3K, P-AKT, and P-ERK) that persisted until surgery. There was also significant correlation between the activation of MET with the level of P-Erk (P=0.0005) and P-PI3K : T-PI3K (total PI3K) ratio (P=0.0037). There was no significant correlation between the activation status of IGFR and HER3 with downstream signalling molecules. CONCLUSIONS: Additional endoscopy and biopsy sampling for multiple biomarker endpoints was feasible and confirmed in vitro data that MET is likely to be a significant mechanism of Lapatinib resistance in vivo.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Quinazolinas/uso terapéutico , Receptor ErbB-2/genética , Neoplasias Gástricas/tratamiento farmacológico , Adenocarcinoma/genética , Anciano , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Unión Esofagogástrica/efectos de los fármacos , Femenino , Humanos , Lapatinib , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/efectos de los fármacos , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-met/genética , Receptor ErbB-3/genética , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genéticaRESUMEN
The proteostasis network (PN) is a collection of protein folding and degradation pathways that spans cellular compartments and acts to preserve the integrity of the proteome. The differential expression of PN genes is a hallmark of many cancers, and the inhibition of protein quality control factors is an effective way to slow cancer cell growth. However, little is known about how the expression of PN genes differs between patients and how this impacts survival outcomes. To address this, we applied unbiased hierarchical clustering to gene expression data obtained from primary and metastatic cutaneous melanoma (CM) samples and found that two distinct groups of individuals emerge across each sample type. These patient groups are distinguished by the differential expression of genes encoding ATP-dependent and ATP-independent chaperones, and proteasomal subunits. Differences in PN gene expression were associated with increased levels of the transcription factors, MEF2A, SP4, ZFX, CREB1 and ATF2, as well as markedly different survival outcomes. However, surprisingly, similar PN alterations in primary and metastatic samples were associated with discordant survival outcomes in patients. Our findings reveal that the expression of PN genes demarcates CM patients and highlights several new proteostasis sub-networks that could be targeted for more effective suppression of CM within specific individuals.
Asunto(s)
Melanoma , Deficiencias en la Proteostasis , Neoplasias Cutáneas , Humanos , Proteostasis/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Adenosina Trifosfato/metabolismo , Expresión Génica , Deficiencias en la Proteostasis/genéticaRESUMEN
BACKGROUND: Carcinogenesis is driven by interactions between genetic mutations and the local tumor microenvironment. Recent research has identified hundreds of cancer driver genes; however, these studies often include a mixture of different molecular subtypes and ecological niches and ignore the impact of the immune system. RESULTS: In this study, we compare the landscape of driver genes in tumors that escaped the immune system (escape +) versus those that did not (escape -). We analyze 9896 primary tumors from The Cancer Genome Atlas using the ratio of non-synonymous to synonymous mutations (dN/dS) and find 85 driver genes, including 27 and 16 novel genes, in escape - and escape + tumors, respectively. The dN/dS of driver genes in immune escaped tumors is significantly lower and closer to neutrality than in non-escaped tumors, suggesting selection buffering in driver genes fueled by immune escape. Additionally, we find that immune evasion leads to more mutated sites, a diverse array of mutational signatures and is linked to tumor prognosis. CONCLUSIONS: Our findings highlight the need for improved patient stratification to identify new therapeutic targets for cancer treatment.
Asunto(s)
Mutación , Neoplasias , Escape del Tumor , Humanos , Neoplasias/genética , Neoplasias/inmunología , Escape del Tumor/genética , Evasión Inmune/genética , Evolución Molecular , Microambiente Tumoral/genéticaRESUMEN
Secreted proteins regulate the balance between cellular proliferation and G0 arrest and therefore play important roles in tumour dormancy. Tumour dormancy presents a significant clinical challenge for breast cancer patients, where non-proliferating, G0-arrested cancer cells remain at metastatic sites, below the level of clinical detection, some of which can re-enter proliferation and drive tumour relapse. Knowing which secreted proteins can regulate entry into and exit from G0 allows us to manipulate their signalling to prevent tumour relapse. To identify novel secreted proteins that can promote breast cancer G0 arrest, we performed a secretome-wide, image-based screen for proteins that increase the fraction of cells in G0 arrest. From a secretome library of 1282 purified proteins, we identified 29 candidates that promote G0 arrest in non-transformed and transformed breast epithelial cells. The assay we have developed can be adapted for use in other perturbation screens in other cell types. All datasets have been made available for re-analysis and our candidate proteins are presented for alternative bioinformatic refinement or further experimental follow up.
Asunto(s)
Neoplasias de la Mama , Humanos , Neoplasias de la Mama/patología , Femenino , Puntos de Control del Ciclo Celular , Fase de Descanso del Ciclo Celular , Secretoma , Línea Celular TumoralRESUMEN
Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.
RESUMEN
The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.
Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Proteína Ligando Fas , SARS-CoV-2 , Animales , Ratones , Líquido del Lavado Bronquioalveolar , COVID-19/patología , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , COVID-19/mortalidad , Proteína Ligando Fas/metabolismo , Inflamación/patología , Inflamación/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BLRESUMEN
Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Péptidos , ProteómicaRESUMEN
Hematoxylin and eosin (H&E) stained slides are widely used in disease diagnosis. Remarkable advances in deep learning have made it possible to detect complex molecular patterns in these histopathology slides, suggesting automated approaches could help inform pathologists' decisions. Multiple instance learning (MIL) algorithms have shown promise in this context, outperforming transfer learning (TL) methods for various tasks, but their implementation and usage remains complex. We introduce HistoMIL, a Python package designed to streamline the implementation, training and inference process of MIL-based algorithms for computational pathologists and biomedical researchers. It integrates a self-supervised learning module for feature encoding, and a full pipeline encompassing TL and three MIL algorithms: ABMIL, DSMIL, and TransMIL. The PyTorch Lightning framework enables effortless customization and algorithm implementation. We illustrate HistoMIL's capabilities by building predictive models for 2,487 cancer hallmark genes on breast cancer histology slides, achieving AUROC performances of up to 85%.
RESUMEN
BACKGROUND: Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS: We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS: We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS: We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteína BRCA1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Funciones de Verosimilitud , Proteína BRCA2/genética , Recombinación Homóloga , Antineoplásicos/uso terapéutico , Microambiente TumoralRESUMEN
The epithelial to mesenchymal transition (EMT) is a key cellular process underlying cancer progression, with multiple intermediate states whose molecular hallmarks remain poorly characterised. To fill this gap, we present a method to robustly evaluate EMT transformation in individual tumours based on transcriptomic signals. We apply this approach to explore EMT trajectories in 7180 tumours of epithelial origin and identify three macro-states with prognostic and therapeutic value, attributable to epithelial, hybrid E/M and mesenchymal phenotypes. We show that the hybrid state is relatively stable and linked with increased aneuploidy. We further employ spatial transcriptomics and single cell datasets to explore the spatial heterogeneity of EMT transformation and distinct interaction patterns with cytotoxic, NK cells and fibroblasts in the tumour microenvironment. Additionally, we provide a catalogue of genomic events underlying distinct evolutionary constraints on EMT transformation. This study sheds light on the aetiology of distinct stages along the EMT trajectory, and highlights broader genomic and environmental hallmarks shaping the mesenchymal transformation of primary tumours.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Transición Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patología , Fenotipo , Genómica , Microambiente Tumoral/genéticaRESUMEN
Head and neck squamous cell carcinoma (HNSCC) is a molecularly and spatially heterogeneous disease frequently characterized by impairment of immunosurveillance mechanisms. Despite recent success with immunotherapy treatment, disease progression still occurs quickly after treatment in the majority of cases, suggesting the need to improve patient selection strategies. In the quest for biomarkers that may help inform response to checkpoint blockade, we characterized the tumor microenvironment (TME) of 162 HNSCC primary tumors of diverse etiologic and spatial origin, through gene expression and IHC profiling of relevant immune proteins, T-cell receptor (TCR) repertoire analysis, and whole-exome sequencing. We identified five HNSCC TME categories based on immune/stromal composition: (i) cytotoxic, (ii) plasma cell rich, (iii) dendritic cell rich, (iv) macrophage rich, and (v) immune-excluded. Remarkably, the cytotoxic and plasma cell rich subgroups exhibited a phenotype similar to tertiary lymphoid structures (TLS), which have been previously linked to immunotherapy response. We also found an increased richness of the TCR repertoire in these two subgroups and in never smokers. Mutational patterns evidencing APOBEC activity were enriched in the plasma cell high subgroup. Furthermore, specific signal propagation patterns within the Ras/ERK and PI3K/AKT pathways associated with distinct immune phenotypes. While traditionally CD8/CD3 T-cell infiltration and immune checkpoint expression (e.g., PD-L1) have been used in the patient selection process for checkpoint blockade treatment, we suggest that additional biomarkers, such as TCR productive clonality, smoking history, and TLS index, may have the ability to pull out potential responders to benefit from immunotherapeutic agents. SIGNIFICANCE: Here we present our findings on the genomic and immune landscape of primary disease in a cohort of 162 patients with HNSCC, benefitting from detailed molecular and clinical characterization. By employing whole-exome sequencing and gene expression analysis of relevant immune markers, TCR profiling, and staining of relevant proteins involved in immune response, we highlight how distinct etiologies, cell intrinsic, and environmental factors combine to shape the landscape of HNSCC primary disease.
Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/genética , Fosfatidilinositol 3-Quinasas , Biomarcadores , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral/genéticaRESUMEN
A variety of mutational processes drive cancer development, but their dynamics across the entire disease spectrum from pre-cancerous to advanced neoplasia are poorly understood. We explore the mutagenic processes shaping oesophageal adenocarcinoma tumorigenesis in 997 instances comprising distinct stages of this malignancy, from Barrett Oesophagus to primary tumours and advanced metastatic disease. The mutational landscape is dominated by the C[T > C/G]T substitution enriched signatures SBS17a/b, which are linked with TP53 mutations, increased proliferation, genomic instability and disease progression. The APOBEC mutagenesis signature is a weak but persistent signal amplified in primary tumours. We also identify prevalent alterations in DNA damage repair pathways, with homologous recombination, base and nucleotide excision repair and translesion synthesis mutated in up to 50% of the cohort, and surprisingly uncoupled from transcriptional activity. Among these, the presence of base excision repair deficiencies show remarkably poor prognosis in the cohort. In this work, we provide insights on the mutational aetiology and changes enabling the transition from pre-neoplastic to advanced oesophageal adenocarcinoma.
Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Mutación , Mutagénesis , Neoplasias Esofágicas/genética , Adenocarcinoma/genéticaRESUMEN
BACKGROUND: Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS: We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS: We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state.