Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916973

RESUMEN

NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7-/- pups died prior to weaning. The most prominent phenotypes in surviving SDNme7-/- animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/- rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Genes Letales , Predisposición Genética a la Enfermedad , Nucleósido-Difosfato Quinasa/deficiencia , Animales , Cilios/metabolismo , Cilios/ultraestructura , Trastornos de la Motilidad Ciliar/diagnóstico , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Genotipo , Inmunohistoquímica , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/metabolismo , Fenotipo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Transcriptoma , Microtomografía por Rayos X
2.
Lipids Health Dis ; 15(1): 199, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871290

RESUMEN

BACKGROUND: Several members of connexin family of transmembrane proteins were previously implicated in distinct metabolic conditions. In this study we aimed to determine the effects of complete and heterozygous form of connexin50 gene (Gja8) mutation L7Q on metabolic profile and oxidative stress parameters in spontaneously hypertensive inbred rat strain (SHR). METHODS: Adult, standard chow-fed male rats of SHR, heterozygous SHR-Dca+/- and SHR-Dca-/- coisogenic strains were used. At the age of 4 months, dexamethasone (2.6 µg/ml) was administered in the drinking water for three days. The lipidemic profile (cholesterol and triacylglycerol concentration in 20 lipoprotein fractions, chylomicron, VLDL, LDL and HDL particle sizes) together with 33 cytokines and hormones in serum and several oxidative stress parameters in plasma, liver, kidney and heart were assessed. RESULTS: SHR and SHR-Dca-/- rats had similar concentrations of triacylglycerols and cholesterol in all major lipoprotein fractions. The heterozygotes reached significantly highest levels of total (SHR-Dca+/-: 51.3 ± 7.2 vs. SHR: 34.5 ± 2.4 and SHR-Dca-/-: 34.4 ± 2.5 mg/dl, p = 0.026), chylomicron and VLDL triacylglycerols. The heterozygotes showed significantly lowest values of HDL cholesterol (40.9 ± 2.3 mg/dl) compared both to SHR (51.8 ± 2.2 mg/dl) and SHR-Dca-/- (48.6 ± 2.7 mg/dl). Total and LDL cholesterol in SHR-Dca+/- was lower compared to SHR. Glucose tolerance was improved and insulin concentrations were lowest in SHR-Dca-/- (1.11 ± 0.20 pg/ml) in comparison with both SHR (2.32 ± 0.49 pg/ml) and SHR-Dca+/- (3.04 ± 0.21 pg/ml). The heterozygous rats showed profile suggestive of increased oxidative stress as well as highest serum concentrations of several pro-inflammatory cytokines including interleukins 6, 12, 17, 18 and tumor necrosis factor alpha. CONCLUSIONS: Our results demonstrate that connexin50 mutation in heterozygous state affects significantly the lipid profile and the oxidative stress parameters in the spontaneously hypertensive rat strain.


Asunto(s)
Conexinas/genética , Heterocigoto , Síndrome Metabólico/metabolismo , Mutación Missense , Animales , Colesterol/sangre , Citocinas/sangre , Insulina/sangre , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Estrés Oxidativo , Ratas , Ratas Endogámicas SHR , Triglicéridos/sangre
3.
Lipids Health Dis ; 13: 172, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25403085

RESUMEN

BACKGROUND: All-trans retinoic acid (ATRA, tretinoin) is a vitamin A derivative commonly used in the treatment of diverse conditions ranging from cancer to acne. In a fraction of predisposed individuals, the administration of ATRA is accompanied by variety of adverse metabolic effects, particularly by the induction of hyperlipidemia. We have previously derived a minimal congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strain sensitive to ATRA-induced increase of triacylglycerols and cholesterol under condition of high-sucrose diet. SHR-Lx differs only by 7 genes of polydactylous rat (PD/Cub) origin from its spontaneously hypertensive rat (SHR) progenitor strain. METHODS: Adult male rats of SHR and SHR-Lx strains were fed standard diet (STD) and experimental groups were subsequently treated with ATRA (15 mg/kg) via oral gavage for 16 days, while still on STD. We contrasted the metabolic profiles (including free fatty acids, triacylglycerols (TG) and cholesterol (C) in 20 lipoprotein fractions) between SHR and SHR-Lx under conditions of standard diet and standard diet + ATRA. We performed transcriptomic analysis of muscle tissue (m. soleus) in all groups using Affymetrix GeneChip Rat Gene 2.0 ST Arrays followed by Ingenuity Pathway Analysis and real-time PCR validation. RESULTS: In response to ATRA, SHR-Lx reacted with substantially greater rise in TG and C concentrations throughout the lipoprotein spectrum (two-way ANOVA strain * RA interaction significant for C content in chylomicrons (CM), VLDL and LDL as well as total, CM and HDL-TG). CONCLUSIONS: According to our modeling of metabolic and signalization pathways using differentially expressed genes we have identified a network with major nodes (including Sirt3, Il1b, Cpt1b and Pparg) likely to underlie the observed strain specific response to ATRA.


Asunto(s)
Dislipidemias/inducido químicamente , Dislipidemias/genética , Transcriptoma , Animales , Dislipidemias/sangre , Metabolismo de los Lípidos , Lípidos/sangre , Masculino , Músculo Esquelético/metabolismo , Ratas Endogámicas SHR , Tretinoina
4.
Antioxidants (Basel) ; 13(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38929066

RESUMEN

Menopause brings about profound physiological changes, including the acceleration of insulin resistance and other abnormalities, in which adipose tissue can play a significant role. This study analyzed the effect of ovariectomy and estradiol substitution on the metabolic parameters and transcriptomic profile of adipose tissue in prediabetic females of hereditary hypertriglyceridemic rats (HHTgs). The HHTgs underwent ovariectomy (OVX) or sham surgery (SHAM), and half of the OVX group received 17ß-estradiol (OVX+E2) post-surgery. Ovariectomy resulted in weight gain, an impaired glucose tolerance, ectopic triglyceride (TG) deposition, and insulin resistance exemplified by impaired glycogenesis and lipogenesis. Estradiol alleviated some of the disorders associated with ovariectomy; in particular, it improved insulin sensitivity and reduced TG deposition. A transcriptomic analysis of perimetrial adipose tissue revealed 809 differentially expressed transcripts in the OVX vs. SHAM groups, mostly pertaining to the regulation of lipid and glucose metabolism, and oxidative stress. Estradiol substitution affected 1049 transcripts with overrepresentation in the signaling pathways of lipid metabolism. The principal component and hierarchical clustering analyses of transcriptome shifts corroborated the metabolic data, showing a closer resemblance between the OVX+E2 and SHAM groups compared to the OVX group. Changes in the adipose tissue transcriptome may contribute to metabolic abnormalities accompanying ovariectomy-induced menopause in HHTg females. Estradiol substitution may partially mitigate some of these disorders.

5.
Genome Res ; 20(1): 19-27, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19887576

RESUMEN

Endogenous retroviruses (ERVs) contribute to a range of germline, as well as somatic mutations in mammals. However, autonomous retrotransposition of potentially active elements has not been demonstrated in the rat genome. We cloned an insertion that disrupted the normal splicing of the Cntrob gene that was subsequently identified as a nonautonomous, novel endogenous retrovirus of the RnERV-K8e family. The RnERV-K8e family is closely related to the recently reported MmERV-K10c elements, but differs from the autonomous mouse MusD or IAP families. In addition, we identified a novel, unexpectedly close relative of RnERV-K8e in the mouse, suggesting ERV-K cross-species transmission between mice and rats. We cloned a potentially autonomous RnERV-K8e element identified by in silico analysis and, using an in vitro retrotransposition assay, demonstrated that it is capable of retrotransposition. This particular element (named Rat-rho, pronounced "retro") encodes a retroviral envelope gene (env); however, env is not required for de novo retrotransposition events. Significant levels of RnERV-K8e-associated genetic polymorphisms were detected among inbred rat strains, suggesting ongoing retrotransposition in the rat genome. This study identifies an ERV-K-type family in rats that shows obvious signs of recent activity. Ongoing retrotranspositional activity may significantly add to genomic variability among inbred rat strains.


Asunto(s)
Retrovirus Endógenos , Variación Genética , Genoma/genética , Ratas Endogámicas/genética , Ratas Endogámicas/virología , Proteínas del Envoltorio Viral/genética , Animales , Elementos Transponibles de ADN/genética , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Femenino , Genes Virales/genética , Masculino , Ratones , Datos de Secuencia Molecular , Ratas , Análisis de Secuencia de ADN , Especificidad de la Especie , Integración Viral
6.
Neuro Endocrinol Lett ; 33 Suppl 2: 43-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23183509

RESUMEN

OBJECTIVES: Ondansetron is an antagonist of 5-HT3 receptors mostly used as an antiemetic yet known to modulate metabolism and appetite. We tested the metabolic effects of ondansetron in newly derived congenic rat strain, carrying limited chromosome 8 regions of (PD) Brown Norway (BN) and polydactylous (PD) strain origins (including variant serotonin receptor Htr3b gene) within the genomic background of highly inbred model of metabolic syndrome, the spontaneously hypertensive rat (SHR). METHODS: Adult, standard diet-fed male rats of SHR and the congenic SHR.(PD/BN)8 strains received ondansetron (2mg/kg body weight/day) or vehicle (n=6/strain/treatment) via oral gavage for 14 days while we followed their metabolic and morphometric profiles including glucose tolerance and triacylgycerol and cholesterol concentrations in 20 lipoprotein fractions. RESULTS: We fine-mapped the chromosome 8 differential segment in the new SHR.(PD/BN)8 congenic strain: it comprises BN-derived region together with an adjacent 422kb stretch of PD origin. The SHR.(PD/BN)8 rats were heavier than SHR, the fasting glucose was significantly higher in ondansetron-treated congenic than in SHR (post-hoc Tukey's HSD p=0.02). Compared to SHR, ondansetron induced significantly more robust increases of cholesterol and triacylglycerol concentrations in total, chylomicron, VLDL and HDL particles in the SHR.(PD/BN)8 congenic strain. CONCLUSION: We established new congenic model with distinct pharmacogenetic profile related to metabolic effects of ondansetron, facilitating thus the search for responsible genetic variants within the limited genomic region demarcated by the differential segment.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión/tratamiento farmacológico , Síndrome Metabólico/tratamiento farmacológico , Ondansetrón/farmacología , Ratas Endogámicas SHR , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Animales , Animales Congénicos , Cromosomas de los Mamíferos , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Lípidos/sangre , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Polidactilia/genética , Ratas , Ratas Endogámicas BN , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo
7.
Nutrients ; 14(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014934

RESUMEN

Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.


Asunto(s)
Proteínas de Transporte de Catión , Hipertensión , Síndrome Metabólico , Animales , Apolipoproteínas M/genética , Proteínas de Transporte de Catión/genética , Cromosomas Humanos Par 20/metabolismo , Ayuno , Ácidos Grasos , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/metabolismo , Masculino , Mamíferos/genética , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Nutrigenómica , Ratas , Ratas Endogámicas BN , Ratas Endogámicas SHR , Sacarosa/efectos adversos
8.
Genes (Basel) ; 12(7)2021 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-34356103

RESUMEN

Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/- on male rats vs. their wild-type Nme7+/+ controls. Nme7+/- animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/- male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.


Asunto(s)
Intolerancia a la Glucosa/genética , Nucleósido-Difosfato Quinasa/genética , Adiposidad/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Lipogénesis/genética , Hígado/metabolismo , Masculino , Nucleósido-Difosfato Quinasa/metabolismo , Obesidad/metabolismo , Ratas , Ratas Sprague-Dawley , Transcriptoma
9.
Lipids Health Dis ; 9: 38, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20398376

RESUMEN

Dexamethasone (DEX) is known to induce diabetes and dyslipidemia. We have compared fasting triacylglycerol and cholesterol concentrations across 20 lipoprotein fractions and glucose tolerance in control (standard diet) and DEX-treated 7-month-old males of two rat strains, Brown Norway (BN) and congenic BN.SHR-(Il6-Cd36)/Cub (BN.SHR4). These two inbred strains differ in a defined segment of chromosome 4, originally transferred from the spontaneously hypertensive rat (SHR) including the mutant Cd36 gene, a known target of DEX. Compared to BN, the standard-diet-fed BN.SHR4 showed higher cholesterol and triacylglycerol concentrations across many lipoprotein fractions, particularly in small VLDL and LDL particles. Total cholesterol was decreased by DEX by more than 21% in BN.SHR4 contrasting with the tendency to increase in BN (strain*DEX interaction p = 0.0017). Similar pattern was observed for triacylglycerol concentrations in LDL. The LDL particle size was significantly reduced by DEX in both strains. Also, while control BN and BN.SHR4 displayed comparable glycaemic profiles during oral glucose tolerance test, we observed a markedly blunted DEX induction of glucose intolerance in BN.SHR4 compared to BN. In summary, we report a pharmacogenetic interaction between limited genomic segment with mutated Cd36 gene and dexamethasone-induced glucose intolerance and triacylglycerol and cholesterol redistribution into lipoprotein fractions.


Asunto(s)
Antígenos CD36/genética , Colesterol/metabolismo , Cromosomas/metabolismo , Dexametasona/farmacología , Lipoproteínas/química , Triglicéridos/metabolismo , Animales , Antígenos CD36/deficiencia , Ayuno , Intolerancia a la Glucosa , Masculino , Mutación , Farmacogenética , Ratas , Ratas Endogámicas SHR
10.
Nutrients ; 12(3)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245222

RESUMEN

Early life exposure to certain environmental stimuli is related to the development of alternative phenotypes in mammals. A number of these phenotypes are related to an increased risk of disease later in life, creating a massive healthcare burden. With recent focus on the determination of underlying causes of common metabolic disorders, parental nutrition is of great interest, mainly due to a global shift towards a Western-type diet. Recent studies focusing on the increase of food or macronutrient intake don't always consider the source of these nutrients as an important factor. In our study, we concentrate on the effects of high-sucrose diet, which provides carbohydrates in form of sucrose as opposed to starch in standard diet, fed in pregnancy and lactation in two subsequent generations of spontaneously hypertensive rats (SHR) and congenic SHR-Zbtb16 rats. Maternal sucrose intake increased fasting glycaemia in SHR female offspring in adulthood and increased their chow consumption in gravidity. High-sucrose diet fed to the maternal grandmother increased brown fat weight and HDL cholesterol levels in adult male offspring of both strains, i.e., the grandsons. Fasting glycaemia was however decreased only in SHR offspring. In conclusion, we show the second-generation effects of maternal exposition to a high-sucrose diet, some modulated to a certain extent by variation in the Zbtb16 gene.


Asunto(s)
Dieta , Sacarosa en la Dieta/metabolismo , Metabolismo Energético , Lípidos/sangre , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Animales , Glucemia , Pesos y Medidas Corporales , Susceptibilidad a Enfermedades , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Metabolismo de los Lípidos , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Embarazo , Ratas
11.
Front Genet ; 11: 529421, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061941

RESUMEN

Overnutrition in pregnancy and lactation affects fetal and early postnatal development, which can result in metabolic disorders in adulthood. We tested a hypothesis that variation of the Zbtb16 gene, a significant energy metabolism regulator, modulates the effect of maternal high-sucrose diet (HSD) on metabolic and transcriptomic profiles of the offspring. We used the spontaneously hypertensive rat (SHR) strain and a minimal congenic rat strain SHR-Zbtb16, carrying the Zbtb16 gene allele originating from the PD/Cub rat, a metabolic syndrome model. Sixteen-week-old SHR and SHR-Zbtb16 rat dams were fed either standard diet (control groups) or a high-sucrose diet (HSD, 70% calories as sucrose) during pregnancy and 4 weeks of lactation. In dams of both strains, we observed an HSD-induced increase of cholesterol and triacylglycerol concentrations in VLDL particles and a decrease of cholesterol and triacylglycerols content in medium to very small LDL particles. In male offspring, exposure to maternal HSD substantially increased brown fat weight in both strains, decreased triglycerides in LDL particles, and impaired glucose tolerance exclusively in SHR. The transcriptome assessment revealed networks of transcripts reflecting the shifts induced by maternal HSD with major nodes including mir-126, Hsd11b1 in the brown adipose tissue, Pcsk9, Nr0b2 in the liver and Hsd11b1, Slc2a4 in white adipose tissue. In summary, maternal HSD feeding during pregnancy and lactation affected brown fat deposition and lipid metabolism in adult male offspring and induced major transcriptome shifts in liver, white, and brown adipose tissues. The Zbtb16 variation present in the SHR-Zbtb16 led to several strain-specific effects of the maternal HSD, particularly the transcriptomic profile shifts of the adult male offspring.

12.
Antioxidants (Basel) ; 9(9)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878255

RESUMEN

Excessive methylglyoxal (MG) production contributes to metabolic and vascular changes by increasing inflammatory processes, disturbing regulatory mechanisms and exacerbating tissue dysfunction. MG accumulation in adipocytes leads to structural and functional changes. We used transcriptome analysis to investigate the effect of MG on metabolic changes in the visceral adipose tissue of hereditary hypetriglyceridaemic rats, a non-obese model of metabolic syndrome. Compared to controls, 4-week intragastric MG administration impaired glucose tolerance (p < 0.05) and increased glycaemia (p < 0.01) and serum levels of MCP-1 and TNFα (p < 0.05), but had no effect on serum adiponectin or leptin. Adipose tissue insulin sensitivity and lipolysis were impaired (p < 0.05) in MG-treated rats. In addition, MG reduced the expression of transcription factor Nrf2 (p < 0.01), which controls antioxidant and lipogenic genes. Increased expression of Mcp-1 and TNFα (p < 0.05) together with activation of the SAPK/JNK signaling pathway can promote chronic inflammation in adipose tissue. Transcriptome network analysis revealed the over-representation of genes involved in insulin signaling (Irs1, Igf2, Ide), lipid metabolism (Nr1d1, Lpin1, Lrpap1) and angiogenesis (Dusp10, Tp53inp1).

13.
Artículo en Inglés | MEDLINE | ID: mdl-31114547

RESUMEN

Background: Liver transplantation leads to non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in up to 40% of graft recipients. The aim of our study was to assess transcriptomic profiles of liver grafts and to contrast the hepatic gene expression between the patients after transplantation with vs. without graft steatosis. Methods: Total RNA was isolated from liver graft biopsies of 91 recipients. Clinical characteristics were compared between steatotic (n = 48) and control (n = 43) samples. Their transcriptomic profiles were assessed using Affymetrix HuGene 2.1 ST Array Strips processed in Affymetrix GeneAtlas. Data were analyzed using Partek Genomics Suite 6.6 and Ingenuity Pathway Analysis. Results: The individuals with hepatic steatosis showed higher indices of obesity including weight, waist circumference or BMI but the two groups were comparable in measures of insulin sensitivity and cholesterol concentrations. We have identified 747 transcripts (326 upregulated and 421 downregulated in steatotic samples compared to controls) significantly differentially expressed between grafts with vs. those without steatosis. Among the most downregulated genes in steatotic samples were P4HA1, IGF1, or fetuin B while the most upregulated were PLIN1 and ME1. Most influential upstream regulators included HNF1A, RXRA, and FXR. The metabolic pathways dysregulated in steatotic liver grafts comprised blood coagulation, bile acid synthesis and transport, cell redox homeostasis, lipid and cholesterol metabolism, epithelial adherence junction signaling, amino acid metabolism, AMPK and glucagon signaling, transmethylation reactions, and inflammation-related pathways. The derived mechanistic network underlying major transcriptome differences between steatotic samples and controls featured PPARA and SERPINE1 as main nodes. Conclusions: While there is a certain overlap between the results of the current study and published transcriptomic profiles of non-transplanted livers with steatosis, we have identified discrete characteristics of the non-alcoholic fatty liver disease in liver grafts potentially utilizable for the establishment of predictive signature.

14.
Pharmacogenomics ; 9(2): 141-55, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18370844

RESUMEN

INTRODUCTION: Thiazolidinediones are increasingly used drugs for the treatment of Type 2 diabetes. The individual response to thiazolidinedione therapy, ranging from the variable degree of metabolic improvement to harmful side-effects, is empirical, yet the underlying mechanisms remain elusive. In order to assess the pharmacogenomic component of thiazolidinediones' metabolic action, we compared the effect of rosiglitazone in two genetically defined models of metabolic syndrome, polydactylous (PD) and BN.SHR4 inbred rat strains, with their insulin-sensitive, normolipidemic counterpart, the Brown Norway (BN) rat. MATERIALS & METHODS: 5-month-old male rats were fed a high-fat diet for 4 weeks, and the experimental groups received rosiglitazone (0.4 mg/100 g body weight) during the last 2 weeks of high-fat diet feeding. We assessed metabolic and morphometric profiles, oxidative stress parameters and gene expression in white adipose tissue. RESULTS: In many followed parameters, we observed genetic background-specific effects of rosiglitazone administration. The mass and the sensitivity of visceral adipose tissue to insulin-stimulated lipogenesis increased with rosiglitazone treatment only in PD, correlating with a PD-specific significant increase in expression of prostaglandin D2 synthase. The glucose tolerance was enhanced in all strains, although fasting plasma glucose was increased by rosiglitazone in BN and BN.SHR4. Among the markers of lipid peroxidation, we observed the rosiglitazone-driven increase of plasma-conjugated dienes only in BN.SHR4. The genes with genotype-specific expression change included ADAM metallopeptidase domain 7, aquaporin 9, carnitine palmitoyltransferase 1B, caveolin 1, catechol-O-methyl transferase, leptin and prostaglandin D2 synthase 2. CONCLUSION: Rosiglitazone's effects on lipid deposition and insulin sensitivity of peripheral tissues are largely dependent on the genetic background it acts upon.


Asunto(s)
Hipoglucemiantes/farmacología , Síndrome Metabólico/metabolismo , Tiazolidinedionas/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Colesterol en la Dieta/farmacología , Dieta , Carbohidratos de la Dieta/farmacología , Ácidos Grasos/farmacología , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucógeno/biosíntesis , Resistencia a la Insulina , Lípidos/biosíntesis , Hígado/efectos de los fármacos , Hígado/metabolismo , Síndrome Metabólico/genética , Análisis por Micromatrices , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , ARN/biosíntesis , ARN/aislamiento & purificación , Ratas , Ratas Endogámicas BN , Ratas Endogámicas , Rosiglitazona , Sacarosa/farmacología
15.
Artículo en Inglés | MEDLINE | ID: mdl-29731739

RESUMEN

BACKGROUND: Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene. METHODS: Adult male rats of SHR-Lx.PD5PD-Zbtb16 (n = 9) and SHR-Lx.PD5SHR-Zbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose. RESULTS: The differential segment of SHR-Lx.PD5SHR-Zbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PD5PD-Zbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PD5PD-Zbtb16 strain compared with SHR-Lx.PD5SHR-Zbtb16 , however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PD5PD-Zbtb16 congenic strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PD5PD-Zbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains. CONCLUSION: The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.

16.
Physiol Genomics ; 27(1): 95-102, 2006 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-16822831

RESUMEN

We have developed a new, double-congenic rat strain BN-Lx.SHR2, which carries two distinct segments of chromosome 2 introgressed from the spontaneously hypertensive rat strain (SHR) into the genetic background of congenic strain BN-Lx, which was previously shown to express variety of metabolic syndrome features. In 16-wk-old male rats of BN-Lx and BN-Lx.SHR2 strains, we compared their glucose tolerance and triacylglycerol and cholesterol concentrations in 20 lipoprotein subfractions and the lipoprotein particle sizes under conditions of feeding standard and high-sucrose diets. Introgression of two distinct SHR-derived chromosome 2 segments resulted in decreased adiposity together with aggravation of glucose intolerance in the double-congenic strain. The BN-Lx.SHR2 rats were more sensitive to sucrose-induced rise in triacylglycerolemia. Although the total cholesterol concentrations of the two strains were comparable after the standard diet and even lower in BN-Lx.SHR2 after sucrose feeding, detailed analysis revealed that under both dietary conditions, the double-congenic strain had significantly higher cholesterol concentrations in low-density lipoprotein fractions and lower high-density lipoprotein fractions. We established a new inbred model showing dyslipidemia and mild glucose intolerance without obesity, attributable to specific genomic regions. For the first time, the chromosome 2 segments of SHR origin are shown to influence other than blood pressure-related features of metabolic syndrome or to be involved in relevant nutrigenomic interactions.


Asunto(s)
Colesterol/análisis , Modelos Animales de Enfermedad , Hipertensión/genética , Lipoproteínas/química , Ratas Endogámicas SHR/genética , Triglicéridos/análisis , Tejido Adiposo/patología , Animales , Animales Congénicos , Cromosomas de los Mamíferos , Genómica , Intolerancia a la Glucosa/genética , Hipertensión/sangre , Hipertensión/patología , Lipoproteínas/sangre , Masculino , Sitios de Carácter Cuantitativo , Ratas , Sacarosa/farmacología
17.
PLoS One ; 11(3): e0152708, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27031336

RESUMEN

Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.


Asunto(s)
Animales Congénicos/genética , Cromosomas Humanos Par 16/genética , Síndrome Metabólico/genética , Ratas Endogámicas BN/genética , Ratas Endogámicas SHR/genética , Animales , Animales Congénicos/metabolismo , Animales Congénicos/fisiología , Genoma , Prueba de Tolerancia a la Glucosa , Hemodinámica , Humanos , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Metaboloma , Ratas Endogámicas BN/metabolismo , Ratas Endogámicas BN/fisiología , Ratas Endogámicas SHR/metabolismo , Ratas Endogámicas SHR/fisiología
18.
Physiol Genomics ; 21(2): 243-52, 2005 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-15728334

RESUMEN

The polydactylous rat strain (PD/Cub) is a highly inbred (F > 90) genetic model of metabolic syndrome. The aim of this study was to analyze the genetic architecture of the metabolic derangements found in the PD/Cub strain and to assess its dynamics in time and in response to diet and medication. We derived a PD/Cub x BN/Cub (Brown Norway) F2 intercross population of 149 male rats and performed metabolic profiling and genotyping and multiple levels of genetic linkage and statistical analyses at five different stages of ontogenesis and after high-sucrose diet feeding and dexamethasone administration challenges. The interval mapping analysis of 83 metabolic and morphometric traits revealed over 50 regions genomewide with significant or suggestive linkage to one or more of the traits in the segregating PD/Cub x BN/Cub population. The multiple interval mapping showed that, in addition to "single" quantitative train loci, there are more than 30 pairs of loci across the whole genome significantly influencing the variation of particular traits in an epistatic fashion. This study represents the first whole genome analysis of metabolic syndrome in the PD/Cub model and reveals several new loci previously not connected to the genetics of insulin resistance and dyslipidemia. In addition, it attempts to present the concept of "dynamic genetic architecture" of metabolic syndrome attributes, evidenced by shifts in the genetic determination of syndrome features during ontogenesis and during adaptation to the dietary and pharmacological influences.


Asunto(s)
Síndrome Metabólico/genética , Ratas Endogámicas/genética , Animales , Animales Congénicos , Antiinflamatorios/administración & dosificación , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Dexametasona/administración & dosificación , Dexametasona/metabolismo , Dexametasona/farmacología , Dislipidemias/genética , Dislipidemias/metabolismo , Ligamiento Genético , Resistencia a la Insulina/genética , Masculino , Síndrome Metabólico/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Ratas , Ratas Endogámicas BN , Ratas Endogámicas/metabolismo , Sacarosa/administración & dosificación , Sacarosa/metabolismo
19.
Curr Opin Mol Ther ; 7(6): 583-7, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16372406

RESUMEN

One of the crucial steps on the way to individualized medicine to treat cardiovascular disease (CVD) is to better understand the identities, roles, extent and at least the major patterns of interaction between influential genomic and environmental factors. It is clear that such a bold goal can hardly be achieved without a major upgrade of our conceptualization of the phenomena studied, taking advantage of recent developments of novel technological and computational tools. Firstly, the search for the genomic components of the most common multifactorial CVDs is no longer restricted to protein-coding genes; truly genome-wide investigations should replace them in both humans and animal models. Secondly, the 'environment' has also undergone semantic expansion, incorporating such remote constituents as developmental plasticity and epigenetics on one side, and socioeconomic status on the other. To elucidate and analyze the resulting complex picture, appropriate statistical models and approaches need to be designed to tackle issues such as population stratification and admixture, multiple testing, and multidimensionality reduction in models involving multiple genes and environmental factors. Eventually, an integrated platform bringing together all of the above will probably be necessary to secure relevant information specific to a particular combination of conditions and settings (age, geo-ethnicity and exposure), which may perhaps become visible only after a step back, through systems (network) biology.


Asunto(s)
Enfermedades Cardiovasculares/etnología , Enfermedades Cardiovasculares/etiología , Genómica/métodos , Animales , Enfermedades Cardiovasculares/genética , Modelos Animales de Enfermedad , Ambiente , Etnicidad/genética , Humanos , Fenotipo
20.
J Hypertens ; 33(4): 727-35; discussion 735, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25915877

RESUMEN

OBJECTIVE: Hypertension and osteoporosis are age-related health risks differentially expressed in men and women. Here we have analysed their prevalence in a randomly selected cross-sectional cohort [CARTaGENE (CaG) of Quebec, Canada and explored their existing relationships along with height, arterial stiffness and bone fractures. METHODS: The principal cohort CaG included 20 007 individuals of age 40-70 years. Participants were subjected to an extensive phenotyping and a questionnaire of medical history and habits. RESULTS: We determined the differences in height of participants and their relation to hypertension status and sex in this cohort and validated it in two other cohorts (The Canadian Heart Health Study and a family cohort from the Saguenay Lac Saint-Jean, a region of Quebec). In all three cohorts, we found that at younger age individuals with hypertension are taller than normotensive individuals, but they have a shorter stature at an older age compared with normotensive individuals. In CaG, we observed that hypertension, low bone mineral density (BMD) and arterial stiffness are strongly associated with height when adjusted for antihypertensive medications (P < 0.0001). Fractures are the net outcome of low BMD, and a significant association is observed (odds ratio = 2.34, confidence interval = 2.12-2.57); this relation was stronger in hypertensive individuals compared with normotensive individuals particularly in younger hypertensive individuals. In addition, we observed that increased arterial stiffness was significantly correlated with a low BMD in both men and women at all ages. CONCLUSION: Shorter stature in elderly, low BMD and fractures correlated with increased arterial stiffness and hypertension. We propose that hypertension and osteoporosis share components of accelerated aging.


Asunto(s)
Estatura , Densidad Ósea , Hipertensión/epidemiología , Osteoporosis/epidemiología , Fracturas Osteoporóticas/epidemiología , Rigidez Vascular , Adulto , Anciano , Antihipertensivos/uso terapéutico , Presión Sanguínea , Estudios de Cohortes , Estudios Transversales , Femenino , Fracturas Óseas/epidemiología , Humanos , Hipertensión/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Prevalencia , Quebec/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA