Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell Proteomics ; 14(9): 2357-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25693799

RESUMEN

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Asunto(s)
Proteínas de Neoplasias/sangre , Neoplasias/metabolismo , Péptidos/análisis , Proteómica/métodos , Cromatografía Liquida/métodos , Humanos , Marcaje Isotópico , Espectrometría de Masas/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/aislamiento & purificación , Neoplasias/sangre , Péptidos/química , Reproducibilidad de los Resultados
2.
Mol Cell Proteomics ; 13(5): 1341-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24563535

RESUMEN

Normalization is an important step in the analysis of quantitative proteomics data. If this step is ignored, systematic biases can lead to incorrect assumptions about regulation. Most statistical procedures for normalizing proteomics data have been borrowed from genomics where their development has focused on the removal of so-called 'batch effects.' In general, a typical normalization step in proteomics works under the assumption that most peptides/proteins do not change; scaling is then used to give a median log-ratio of 0. The focus of this work was to identify other factors, derived from knowledge of the variables in proteomics, which might be used to improve normalization. Here we have examined the multi-laboratory data sets from Phase I of the NCI's CPTAC program. Surprisingly, the most important bias variables affecting peptide intensities within labs were retention time and charge state. The magnitude of these observations was exaggerated in samples of unequal concentrations or "spike-in" levels, presumably because the average precursor charge for peptides with higher charge state potentials is lower at higher relative sample concentrations. These effects are consistent with reduced protonation during electrospray and demonstrate that the physical properties of the peptides themselves can serve as good reporters of systematic biases. Between labs, retention time, precursor m/z, and peptide length were most commonly the top-ranked bias variables, over the standardly used average intensity (A). A larger set of variables was then used to develop a stepwise normalization procedure. This statistical model was found to perform as well or better on the CPTAC mock biomarker data than other commonly used methods. Furthermore, the method described here does not require a priori knowledge of the systematic biases in a given data set. These improvements can be attributed to the inclusion of variables other than average intensity during normalization.


Asunto(s)
Biometría/métodos , Péptidos/análisis , Proteínas/análisis , Proteómica/métodos , Cromatografía Liquida , Interpretación Estadística de Datos , Espectrometría de Masas , Modelos Estadísticos , Proteínas/química
3.
Mol Cell Proteomics ; 12(9): 2623-39, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23689285

RESUMEN

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.


Asunto(s)
Cromatografía Liquida/instrumentación , Cromatografía Liquida/métodos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Secuencia de Aminoácidos , Animales , Bovinos , Límite de Detección , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Estándares de Referencia , Programas Informáticos , Factores de Tiempo
4.
Biometrics ; 70(2): 398-408, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24495167

RESUMEN

Linear regressions are commonly used to calibrate the signal measurements in proteomic analysis by mass spectrometry. However, with or without a monotone (e.g., log) transformation, data from such functional proteomic experiments are not necessarily linear or even monotone functions of protein (or peptide) concentration except over a very restricted range. A computationally efficient spline procedure improves upon linear regression. However, mass spectrometry data are not necessarily homoscedastic; more often the variation of measured concentrations increases disproportionately near the boundaries of the instruments measurement capability (dynamic range), that is, the upper and lower limits of quantitation. These calibration difficulties exist with other applications of mass spectrometry as well as with other broad-scale calibrations. Therefore the method proposed here uses a functional data approach to define the calibration curve and also the limits of quantitation under the two assumptions: (i) that the variance is a bounded, convex function of concentration; and (ii) that the calibration curve itself is monotone at least between the limits of quantitation, but not necessarily outside these limits. Within this paradigm, the limit of detection, where the signal is definitely present but not measurable with any accuracy, is also defined. An iterative approach draws on existing smoothing methods to account simultaneously for both restrictions and is shown to achieve the global optimal convergence rate under weak conditions. This approach can also be implemented when convexity is replaced by other (bounded) restrictions. Examples from Addona et al. (2009, Nature Biotechnology 27, 663-641) both motivate and illustrate the effectiveness of this functional data methodology when compared with the simpler linear regressions and spline techniques.


Asunto(s)
Biometría/métodos , Espectrometría de Masas/estadística & datos numéricos , Interpretación Estadística de Datos , Humanos , Modelos Lineales , Modelos Estadísticos , Proteómica/estadística & datos numéricos , Estadísticas no Paramétricas
5.
Stat Med ; 32(1): 153-64, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22886476

RESUMEN

Cardiac safety assessment in drug development concerns the ventricular repolarization (represented by electrocardiogram (ECG) T-wave) abnormalities of a cardiac cycle, which are widely believed to be linked with torsades de pointes, a potentially life-threatening arrhythmia. The most often used biomarker for such abnormalities is the prolongation of the QT interval, which relies on the correct annotation of onset of QRS complex and offset of T-wave on ECG. A new biomarker generated from a functional data-based methodology is developed to quantify the T-wave morphology changes from placebo to drug interventions. Comparisons of T-wave-form characters through a multivariate linear mixed model are made to assess cardiovascular risk of drugs. Data from a study with 60 subjects participating in a two-period placebo-controlled crossover trial with repeat ECGs obtained at baseline and 12 time points after interventions are used to illustrate this methodology; different types of wave form changes were characterized and motivated further investigation.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Interpretación Estadística de Datos , Electrocardiografía/métodos , Modelos Lineales , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Antiarrítmicos/farmacología , Biomarcadores/análisis , Enfermedades Cardiovasculares/inducido químicamente , Femenino , Humanos , Masculino
6.
PLoS One ; 6(1): e14590, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21298095

RESUMEN

BACKGROUND: In the Addona et al. paper (Nature Biotechnology 2009), a large-scale multi-site study was performed to quantify Multiple Reaction Monitoring (MRM) measurements of proteins spiked in human plasma. The unlabeled signature peptides derived from the seven target proteins were measured at nine different concentration levels, and their isotopic counterparts were served as the internal standards. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, the sources of variation are analyzed by decomposing the variance into parts attributable to specific experimental factors: technical replicates, sites, peptides, transitions within each peptide, and higher-order interaction terms based on carefully built mixed effects models. The factors of peptides and transitions are shown to be major contributors to the variance of the measurements considering heavy (isotopic) peptides alone. For the light ((12)C) peptides alone, in addition to these factors, the factor of study*peptide also contributes significantly to the variance of the measurements. Heterogeneous peptide component models as well as influence analysis identify the outlier peptides in the study, which are then excluded from the analysis. Using a log-log scale transformation and subtracting the heavy/isotopic peptide [internal standard] measurement from the peptide measurements (i.e., taking the logarithm of the peak area ratio in the original scale establishes that), the MRM measurements are overall consistent across laboratories following the same standard operating procedures, and the variance components related to sites, transitions and higher-order interaction terms involving sites have greatly reduced impact. Thus the heavy peptides have been effective in reducing apparent inter-site variability. In addition, the estimates of intercepts and slopes of the calibration curves are calculated for the sub-studies. CONCLUSIONS/SIGNIFICANCE: The MRM measurements are overall consistent across laboratories following the same standard operating procedures, and heavy peptides can be used as an effective internal standard for reducing apparent inter-site variability. Mixed effects modeling is a valuable tool in mass spectrometry-based proteomics research.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/sangre , Proteómica/métodos , Análisis de Varianza , Calibración , Humanos , Espectrometría de Masas/estadística & datos numéricos , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA