Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 24(7): 1573-81, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26935942

RESUMEN

Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. Knock down of both enzymes leads to cell cycle arrest and is lethal to the parasite. Recently, we reported the phenylpyridazinone, NPD-001, with low nanomolar IC50 values on both TbrPDEB1 (IC50: 4nM) and TbrPDEB2 (IC50: 3nM) (J. Infect. Dis.2012, 206, 229). In this study, we now report on the first structure activity relationships of a series of phenylpyridazinone analogs as TbrPDEB1 inhibitors. A selection of compounds was also shown to be anti-parasitic. Importantly, a good correlation between TbrPDEB1 IC50 and EC50 against the whole parasite was observed. Preliminary analysis of the SAR of selected compounds on TbrPDEB1 and human PDEs shows large differences which shows the potential for obtaining parasite selective PDE inhibitors. The results of these studies support the pharmacological validation of the Trypanosome PDEB family as novel therapeutic approach for HAT and provide as well valuable information for the design of potent TbrPDEB1 inhibitors that could be used for the treatment of this disease.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Piridazinas/farmacología , Tetrazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Inhibidores de Fosfodiesterasa/química , Proteínas Protozoarias/metabolismo , Piridazinas/síntesis química , Piridazinas/química , Relación Estructura-Actividad , Tetrazoles/síntesis química , Tetrazoles/química , Tripanocidas/síntesis química , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
2.
J Biol Chem ; 287(15): 11788-97, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22356915

RESUMEN

Trypanosoma cruzi phosphodiesterase C (TcrPDEC) is a potential new drug target for the treatment of Chagas disease but has not been well studied. This study reports the enzymatic properties of various kinetoplastid PDECs and the crystal structures of the unliganded TcrPDEC1 catalytic domain and its complex with an inhibitor. Mutations of PDEC during the course of evolution led to inactivation of PDEC in Trypanosoma brucei/Trypanosoma evansi/Trypanosoma congolense, whereas the enzyme is active in all other kinetoplastids. The TcrPDEC1 catalytic domain hydrolyzes both cAMP and cGMP with a K(m) of 23.8 µm and a k(cat) of 31 s(-1) for cAMP and a K(m) of 99.1 µm and a k(cat) of 17 s(-1) for cGMP, thus confirming its dual specificity. The crystal structures show that the N-terminal fragment wraps around the TcrPDEC catalytic domain and may thus regulate its enzymatic activity via direct interactions with the active site residues. A PDE5 selective inhibitor that has an IC(50) of 230 nm for TcrPDEC1 binds to TcrPDEC1 in an orientation opposite to that of sildenafil. This observation, together with the screen of the inhibitory potency of human PDE inhibitors against TcrPDEC, implies that the scaffold of some human PDE inhibitors might be used as the starting model for design of parasite PDE inhibitors. The structural study also identified a unique parasite pocket that neighbors the active site and may thus be valuable for the design of parasite-specific inhibitors.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/química , Proteínas Protozoarias/química , Sulfonamidas/química , Trypanosoma cruzi/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Diseño de Fármacos , Cinética , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/biosíntesis , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Propiedades de Superficie
3.
J Biol Chem ; 287(30): 25640-9, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22613721

RESUMEN

CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.


Asunto(s)
Evolución Molecular , Neurotoxinas/química , Venenos de Araña/química , Arañas/química , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , ADN Complementario/genética , Drosophila melanogaster , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Femenino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Neurotoxinas/genética , Estructura Terciaria de Proteína , Rana temporaria , Venenos de Araña/genética , Arañas/genética , Xenopus laevis
4.
J Infect Dis ; 206(2): 229-37, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22291195

RESUMEN

The development of drugs for neglected infectious diseases often uses parasite-specific enzymes as targets. We here demonstrate that parasite enzymes with highly conserved human homologs may represent a promising reservoir of new potential drug targets. The cyclic nucleotide-specific phosphodiesterases (PDEs) of Trypanosoma brucei, causative agent of the fatal human sleeping sickness, are essential for the parasite. The highly conserved human homologs are well-established drug targets. We here describe what is to our knowledge the first pharmacological validation of trypanosomal PDEs as drug targets. High-throughput screening of a proprietary compound library identified a number of potent hits. One compound, the tetrahydrophthalazinone compound A (Cpd A), was further characterized. It causes a dramatic increase of intracellular cyclic adenosine monophosphate (cAMP). Short-term cell viability is not affected, but cell proliferation is inhibited immediately, and cell death occurs within 3 days. Cpd A prevents cytokinesis, resulting in multinucleated, multiflagellated cells that eventually lyse. These observations pharmacologically validate the highly conserved trypanosomal PDEs as potential drug targets.


Asunto(s)
Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Piridazinas/farmacología , Tetrazoles/farmacología , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación Enzimológica de la Expresión Génica , Ratones , Estructura Molecular , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/genética , Piridazinas/química , Piridazinas/uso terapéutico , Tetrazoles/química , Tetrazoles/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos
5.
Mol Microbiol ; 78(3): 757-69, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20969649

RESUMEN

The parasitic protozoa Trypanosoma brucei has a complex life cycle. Oxidative phosphorylation is highly active in the procyclic form but absent from bloodstream cells. The mitochondrial genome encodes several gene products that are required for oxidative phosphorylation, but it completely lacks tRNA genes. For mitochondrial translation to occur, the import of cytosolic tRNAs is therefore essential for procyclic T. brucei. Whether the same is true for the bloodstream form has not been studied so far. Here we show that the steady-state levels of mitochondrial tRNAs are essentially the same in both life stages. Editing of the imported tRNA(Trp) also occurs in both forms as well as in mitochondria of Trypanosoma evansi, which lacks a genome and a translation system. These results show that mitochondrial tRNA import is a constitutive process that must be mediated by proteins that are expressed in both forms of the life cycle and that are not encoded in the mitochondrial genome. Moreover, bloodstream cells lacking either mitochondria-specific translation elongation factor Tu or mitochondrial tryptophanyl-tRNA synthetase are not viable indicating that mitochondrial translation is also essential in this stage. Both of these proteins show trypanosomatid-specific features and may therefore be excellent novel drug targets.


Asunto(s)
Sangre/parasitología , Mitocondrias/genética , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/parasitología , Animales , Animales no Consanguíneos , Transporte Biológico , Femenino , Humanos , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Proteínas Protozoarias/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
6.
BMC Microbiol ; 11: 4, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21208463

RESUMEN

BACKGROUND: Exopolyphosphatases and pyrophosphatases play important but still incompletely understood roles in energy metabolism, and also in other aspects of cell biology such as osmoregulation or signal transduction. Earlier work has suggested that a human exopolyphosphatase, Prune, might exhibit cyclic nucleotide phosphodiesterase activity. RESULTS: The kinetoplastida, a large order of unicellular eukaryotes that contains many important pathogens such as Trypanosoma brucei (human sleeping sickness), Trypanosoma cruzi (Chagas disease) or Leishmania ssp (several clinically dinstinct leishmaniases) all contain several exo- and pyrophosphatases. The current study provides a systematic classification of these enzymes, which now allows to situate the information that is already available on some of these enzymes. It then analyses the exopolyphosphatase TbrPPX1 of T. brucei in detail, using RNA interference and genetic knockouts in an attempt to define its function, and immunofluorescence microscopy to study its subcellular localization.TbrPPX1 is an exopolyphosphatase that does hydrolyze pentasodium triphosphate, but not organic triphosphates such as ATP, pyrophosphate or long-chain polyphosphates. Finally, the study investigates the potential cyclic nucleotide phosphodiesterase activity of TbrPPX1. CONCLUSIONS: All kinetoplastid genomes that are currently available contain genes for an exopolyphosphatase and two classes of pyrophosphatases, one associated with the acidocalcisomes and one cytoplasmic. TbrPPX1 represents the T. brucei exopolyphosphatase. It is located throughout the cytoplasm, and its genetic ablation does not produce a dramatic phenotype. Importantly, TbrPPX1 does not exhibit any cyclic nucleotide specific phosphodiesterase activity, which definitively eliminates it as an additional player in cAMP signalling of the kinetoplastida.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Genoma de Protozoos , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Femenino , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Interferencia de ARN
7.
Amino Acids ; 40(1): 69-76, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20140690

RESUMEN

Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-D: - and all-L: -cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of L: -cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptide.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Citotoxinas/farmacología , Insecticidas/farmacología , Péptidos/farmacología , Venenos de Araña/farmacología , Arañas/química , Animales , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos , Antineoplásicos/química , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Citotoxinas/química , Drosophila melanogaster/efectos de los fármacos , Humanos , Insecticidas/química , Estructura Molecular , Parásitos/efectos de los fármacos , Péptidos/química , Venenos de Araña/química
8.
Eukaryot Cell ; 9(10): 1466-75, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20693305

RESUMEN

The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/química , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Citoesqueleto/enzimología , Flagelos/enzimología , Transducción de Señal , Trypanosoma brucei brucei/enzimología , 3',5'-AMP Cíclico Fosfodiesterasas/genética , Secuencia de Aminoácidos , Animales , AMP Cíclico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
9.
Handb Exp Pharmacol ; (204): 487-510, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695653

RESUMEN

Protozoan parasites of the order kinetoplastida are the causative agents of three of the world's most important neglected human diseases: African trypanosomiasis, American trypanosomiasis, and leishmaniasis. Current therapies are limited, with some treatments having serious and sometimes lethal side effects. The growing number of cases that are refractory to treatment is also of concern. With few new drugs in development, there is an unmet medical need for new, more effective, and safer medications. Recent studies employing genetic and pharmacological techniques have begun to shed light on the role of the cyclic nucleotide phosphodiesterases in the life cycle of these pathogens and suggest that these important regulators of cyclic nucleotide signaling may be promising new targets for the treatment of parasitic diseases.


Asunto(s)
Leishmaniasis/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Tripanosomiasis/tratamiento farmacológico , Animales , Cristalización , Humanos , Kinetoplastida/enzimología , Leishmaniasis/enzimología , Nucleótidos Cíclicos/fisiología , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/fisiología , Transducción de Señal/fisiología , Tripanosomiasis/enzimología
10.
Anal Biochem ; 382(2): 87-93, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18722997

RESUMEN

The urgent need for new drug development for African trypanosomiasis is widely recognized. This requires reliable and informative high-throughput assays. Currently, drug action is determined with a fluorimetric/colorimetric assay based on the metabolism of the dye Alamar Blue (resazurin) by live cells. However, this assay does not easily distinguish between cell death and growth arrest, or supply information about the rate at which test compounds affect these parameters. We report here an alternative fluorimetric assay, based on the interaction of propidium iodide with DNA, that allows either real-time monitoring of cell viability or the generation of EC(50) values at a predetermined time-point. The assay is highly sensitive and fluorescence readings easily correlate to numbers of parasites or DNA content. The EC(50) values were highly similar to those obtained with the standard Alamar Blue assay. The procedure lends itself readily to applications in drug development or resistance monitoring.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Propidio/análisis , Tripanocidas/farmacología , Animales , Bioensayo , Supervivencia Celular , ADN Protozoario/metabolismo , Indicadores y Reactivos , Oxazinas/análisis , Oxazinas/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Xantenos/análisis , Xantenos/metabolismo
11.
FASEB J ; 21(3): 720-31, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17167070

RESUMEN

Cyclic nucleotide specific phosphodiesterases (PDEs) are pivotal regulators of cellular signaling. They are also important drug targets. Besides catalytic activity and substrate specificity, their subcellular localization and interaction with other cell components are also functionally important. In contrast to the mammalian PDEs, the significance of PDEs in protozoal pathogens remains mostly unknown. The genome of Trypanosoma brucei, the causative agent of human sleeping sickness, codes for five different PDEs. Two of these, TbrPDEB1 and TbrPDEB2, are closely similar, cAMP-specific PDEs containing two GAF-domains in their N-terminal regions. Despite their similarity, these two PDEs exhibit different subcellular localizations. TbrPDEB1 is located in the flagellum, whereas TbrPDEB2 is distributed between flagellum and cytoplasm. RNAi against the two mRNAs revealed that the two enzymes can complement each other but that a simultaneous ablation of both leads to cell death in bloodstream form trypanosomes. RNAi against TbrPDEB1 and TbrPDEB2 also functions in vivo where it completely prevents infection and eliminates ongoing infections. Our data demonstrate that TbrPDEB1 and TbrPDEB2 are essential for virulence, making them valuable potential targets for new PDE-inhibitor based trypanocidal drugs. Furthermore, they are compatible with the notion that the flagellum of T. brucei is an important site of cAMP signaling.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/fisiología , Trypanosoma brucei brucei/patogenicidad , Virulencia/fisiología , 3',5'-AMP Cíclico Fosfodiesterasas/clasificación , Animales , Humanos , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/parasitología
12.
Trends Parasitol ; 23(2): 71-7, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17174157

RESUMEN

Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.


Asunto(s)
Movimiento Celular/fisiología , Flagelos/fisiología , Espermatozoides/fisiología , Trypanosoma/fisiología , Animales , Flagelos/metabolismo , Glucólisis , Humanos , Masculino , Ratones , Nucleótidos Cíclicos/metabolismo , Transducción de Señal , Espermatozoides/metabolismo , Trypanosoma/metabolismo
13.
Mol Biochem Parasitol ; 146(1): 38-44, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16343658

RESUMEN

We previously showed that over-expression of Trypanosoma brucei MRPA, a member of the multidrug resistance protein family in T. brucei, reproducibly resulted in resistance to the anti-trypanosomal drug melarsoprol in vitro. MRPA is predicted to mediate efflux of melarsoprol as a conjugate with trypanothione, a glutathione-spermidine conjugate which is the major small thiol in trypanosomes. Here, we show that depletion of MRPA by RNA interference resulted in moderate hypersensitivity to both melarsoprol and melarsen oxide. Over-expression of MRPA alone is not sufficient to cause melarsoprol resistance in vivo, although it is sufficient in vitro. This discrepancy is not an effect of drug metabolism since over-expression of MRPA alone conferred resistance to melarsoprol and its principle metabolite, melarsen oxide, in vitro. Over-expression of MRPA was not detected in four melarsoprol-resistant trypanosome isolates from sleeping sickness patients.


Asunto(s)
Melarsoprol/farmacología , Proteínas de Transporte de Membrana/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Proteínas Protozoarias/fisiología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/parasitología , Animales , Arsenicales/farmacología , Western Blotting/métodos , Línea Celular , Electroforesis en Gel de Poliacrilamida , Femenino , Expresión Génica , Humanos , Melarsoprol/química , Melarsoprol/uso terapéutico , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/biosíntesis , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/análisis , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/biosíntesis , Pruebas de Sensibilidad Parasitaria/métodos , Proteínas Protozoarias/análisis , Proteínas Protozoarias/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Insuficiencia del Tratamiento , Tripanocidas/química , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico
14.
BMC Microbiol ; 6: 25, 2006 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-16522215

RESUMEN

BACKGROUND: Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. RESULTS: This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs) from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range. Several PDE inhibitors were found to be active against these PDEs in vitro, and to inhibit cell proliferation. CONCLUSION: The genome of L. major contains only PDE genes that are predicted to code for class I PDEs, and none for class II PDEs. This is more similar to what is found in higher eukaryotes than it is to the situation in Dictyostelium or the fungi that concomitantly express class I and class II PDEs. Functional complementation demonstrated that LmjPDEA, LmjPDEB1 and LmjPDEB2 are capable of hydrolyzing cAMP. In vitro studies with recombinant LmjPDEB1 and LmjPDEB2 confirmed this, and they demonstrated that both are completely cAMP-specific. Both enzymes are inhibited by several commercially available PDE inhibitors. The observation that these inhibitors also interfere with cell growth in culture indicates that inhibition of the PDEs is fatal for the cell, suggesting an important role of cAMP signalling for the maintenance of cellular integrity and proliferation.


Asunto(s)
Leishmania major/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proliferación Celular , Inhibidores Enzimáticos , Regulación Enzimológica de la Expresión Génica , Hidrolasas Diéster Fosfóricas/genética , ARN Protozoario/metabolismo , Especificidad por Sustrato
15.
FEBS J ; 272(24): 6412-22, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16336277

RESUMEN

Cyclic-nucleotide-specific phosphodiesterases (PDEs) are key players in the intracellular signaling pathways of the important human pathogen Trypanosoma cruzi. We report herein the identification of an unusual PDE from this protozoal organism. This enzyme, TcrPDEC, is a member of the class I PDEs, as determined from the presence of a characteristic signature sequence and from the conservation of a number of functionally important amino acid residues within its catalytic domain. Class I PDEs include a large number of PDEs from eukaryotes, among them all 11 human PDE families. Unusually for an enzyme of this class, TcrPDEC contains a FYVE-type domain in its N-terminal region, followed by two closely spaced coiled-coil domains. Its catalytic domain is located in the middle of the polypeptide chain, whereas all other class I enzymes contain their catalytic domains in their C-terminal parts. TcrPDEC can complement a PDE-deficient yeast strain. Unexpectedly for a kinetoplastid PDE, TcrPDEC is a dual-specificity PDE that accepts both cAMP and cGMP as its substrates.


Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Trypanosoma cruzi/enzimología , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Secuencia Conservada , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Protozoarias , Especificidad por Sustrato
16.
Int J Parasitol ; 33(10): 1099-104, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-13129532

RESUMEN

Infection of humans with Trypanosoma brucei causes sleeping sickness, which is invariably fatal if left untreated. The course of infection is characterised, among others, by multiple organ damage including cardiovascular dysfunctions such as hypotension and breakdown of the blood-brain barrier. The latter eventually leads to the parasite invasion into central nervous system and ultimately to the death of the patient. Nitric oxide (NO) synthesised from L-arginine via endothelial NO-synthase (eNOS) is involved in the control of vascular tone and permeability. The present study explores the effect of T. brucei infection on the endothelium-dependent in vitro vasomotor response of isolated mouse aortas. Aorta rings were suspended in organ chambers for isometric tension recording. The endothelium-dependent NO-mediated relaxation in response to acetylcholine (10(-9) to 10(-5) M) was markedly enhanced in the infected mice compared to controls (P<0.05), whereas the endothelium-independent vasodilation to an exogenous NO-donor, sodium nitroprusside, was comparable in both groups. Norepinephrine-stimulated contraction was also comparable in the absence or presence of the NO-synthase inhibitor N(omega)-Nitro-L-arginine methyl ester (L-NAME; 10(-4)M) in both groups. The enhanced endothelium-dependent relaxation in the infected mice correlated well with a 3.5-fold increase in eNOS protein level in these aortas as compared to those of control mice (P=0.05). Thus, T. brucei infection enhances eNOS protein expression in the endothelium, causing a pronounced vasodilation. Overproduction of NO in trypanosomiasis may be involved in the observed generalised hypotension and in an increased vascular permeability that facilitates T. brucei invasion into surrounding tissues and its penetration into the central nervous system in later phases of infection.


Asunto(s)
Endotelio Vascular/enzimología , Óxido Nítrico Sintasa/biosíntesis , Trypanosoma brucei brucei/fisiología , Tripanosomiasis Africana/enzimología , Animales , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Endotelio Vascular/fisiopatología , Femenino , Expresión Génica , Interacciones Huésped-Parásitos , Técnicas In Vitro , Ratones , Músculo Liso Vascular/fisiopatología , Óxido Nítrico Sintasa/genética , Tripanosomiasis Africana/fisiopatología , Vasoconstricción , Vasodilatación
17.
J Med Chem ; 56(5): 2087-96, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23409953

RESUMEN

Trypanosoma brucei cyclic nucleotide phosphodiesterase B1 (TbrPDEB1) and TbrPDEB2 have recently been validated as new therapeutic targets for human African trypanosomiasis by both genetic and pharmacological means. In this study we report the crystal structure of the catalytic domain of the unliganded TbrPDEB1 and its use for the in silico screening for new TbrPDEB1 inhibitors with novel scaffolds. The TbrPDEB1 crystal structure shows the characteristic folds of human PDE enzymes but also contains the parasite-specific P-pocket found in the structures of Leishmania major PDEB1 and Trypanosoma cruzi PDEC. The unliganded TbrPDEB1 X-ray structure was subjected to a structure-based in silico screening approach that combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. This approach identified six novel TbrPDEB1 inhibitors with IC50 values of 10-80 µM, which may be further optimized as potential selective TbrPDEB inhibitors.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/aislamiento & purificación , 3',5'-AMP Cíclico Fosfodiesterasas/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalización , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Inhibidores de Fosfodiesterasa/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Alineación de Secuencia , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Difracción de Rayos X
18.
J Med Chem ; 55(20): 8745-56, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22963052

RESUMEN

Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. We used homology modeling and docking studies to guide fragment growing into the parasite-specific P-pocket in the enzyme binding site. The resulting catechol pyrazolinones act as potent TbrPDEB1 inhibitors with IC50 values down to 49 nM. The compounds also block parasite proliferation (e.g., VUF13525 (20b): T. brucei rhodesiense IC50 = 60 nM, T. brucei brucei IC50 = 520 nM, T. cruzi = 7.6 µM), inducing a typical multiple nuclei and kinetoplast phenotype without being generally cytotoxic. The mode of action of 20b was investigated with recombinantly engineered trypanosomes expressing a cAMP-sensitive FRET sensor, confirming a dose-response related increase of intracellular cAMP levels in trypanosomes. Our findings further validate the TbrPDEB family as antitrypanosomal target.


Asunto(s)
Catecoles/síntesis química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Pirazoles/síntesis química , Pirazolonas/síntesis química , Tetrazoles/síntesis química , Tripanocidas/síntesis química , Trypanosoma brucei brucei/efectos de los fármacos , Sitios de Unión , Catecoles/química , Catecoles/farmacología , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/química , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Pirazoles/química , Pirazoles/farmacología , Pirazolonas/química , Pirazolonas/farmacología , Relación Estructura-Actividad , Tetrazoles/química , Tetrazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA