Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Genet ; 39(7): 839-47, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17572675

RESUMEN

Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.


Asunto(s)
Genoma , Genómica , Leishmania/genética , Leishmaniasis/parasitología , Secuencia de Aminoácidos , Animales , Humanos , Leishmania braziliensis/genética , Leishmania infantum/genética , Leishmania major/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Datos de Secuencia Molecular
2.
Genome Res ; 21(12): 2129-42, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22038252

RESUMEN

Leishmania parasites cause a spectrum of clinical pathology in humans ranging from disfiguring cutaneous lesions to fatal visceral leishmaniasis. We have generated a reference genome for Leishmania mexicana and refined the reference genomes for Leishmania major, Leishmania infantum, and Leishmania braziliensis. This has allowed the identification of a remarkably low number of genes or paralog groups (2, 14, 19, and 67, respectively) unique to one species. These were found to be conserved in additional isolates of the same species. We have predicted allelic variation and find that in these isolates, L. major and L. infantum have a surprisingly low number of predicted heterozygous SNPs compared with L. braziliensis and L. mexicana. We used short read coverage to infer ploidy and gene copy numbers, identifying large copy number variations between species, with 200 tandem gene arrays in L. major and 132 in L. mexicana. Chromosome copy number also varied significantly between species, with nine supernumerary chromosomes in L. infantum, four in L. mexicana, two in L. braziliensis, and one in L. major. A significant bias against gene arrays on supernumerary chromosomes was shown to exist, indicating that duplication events occur more frequently on disomic chromosomes. Taken together, our data demonstrate that there is little variation in unique gene content across Leishmania species, but large-scale genetic heterogeneity can result through gene amplification on disomic chromosomes and variation in chromosome number. Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression in response to environmental conditions in the host, providing a genetic basis for disease tropism.


Asunto(s)
Cromosomas/genética , Dosificación de Gen/fisiología , Regulación de la Expresión Génica/fisiología , Genes Protozoarios/fisiología , Leishmania/genética , Polimorfismo de Nucleótido Simple , Secuencia de Bases , Cromosomas/metabolismo , Leishmania/metabolismo , Datos de Secuencia Molecular , Especificidad de la Especie
3.
BMC Genomics ; 11: 214, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20353581

RESUMEN

BACKGROUND: Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. RESULTS: Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. CONCLUSIONS: Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other Campylobacter bacteriophages, forming a highly conserved lineage of bacteriophages that predate upon campylobacters and indicating that highly adapted bacteriophage genomes can be stable over prolonged periods of time.


Asunto(s)
Bacteriófagos/genética , Campylobacter/virología , Bacteriófagos/patogenicidad , Secuencia Conservada , Genoma Viral , Análisis de Secuencia , Proteínas Estructurales Virales/genética , Virulencia
4.
BMC Genomics ; 9: 616, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-19099551

RESUMEN

BACKGROUND: The fish pathogen Aliivibrio salmonicida is the causative agent of cold-water vibriosis in marine aquaculture. The Gram-negative bacterium causes tissue degradation, hemolysis and sepsis in vivo. RESULTS: In total, 4 286 protein coding sequences were identified, and the 4.6 Mb genome of A. salmonicida has a six partite architecture with two chromosomes and four plasmids. Sequence analysis revealed a highly fragmented genome structure caused by the insertion of an extensive number of insertion sequence (IS) elements. The IS elements can be related to important evolutionary events such as gene acquisition, gene loss and chromosomal rearrangements. New A. salmonicida functional capabilities that may have been aquired through horizontal DNA transfer include genes involved in iron-acquisition, and protein secretion and play potential roles in pathogenicity. On the other hand, the degeneration of 370 genes and consequent loss of specific functions suggest that A. salmonicida has a reduced metabolic and physiological capacity in comparison to related Vibrionaceae species. CONCLUSION: Most prominent is the loss of several genes involved in the utilisation of the polysaccharide chitin. In particular, the disruption of three extracellular chitinases responsible for enzymatic breakdown of chitin makes A. salmonicida unable to grow on the polymer form of chitin. These, and other losses could restrict the variety of carrier organisms A. salmonicida can attach to, and associate with. Gene acquisition and gene loss may be related to the emergence of A. salmonicida as a fish pathogen.


Asunto(s)
Aliivibrio salmonicida/genética , Peces/microbiología , Genoma Bacteriano , Animales , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN , ADN Bacteriano/genética , Genómica , Plásmidos/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
5.
Genetics ; 170(4): 1589-600, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15965256

RESUMEN

In the fungus Pneumocystis carinii, at least three gene families (PRT1, MSR, and MSG) have the potential to generate high-frequency antigenic variation, which is likely to be a strategy by which this parasitic fungus is able to prolong its survival in the rat lung. Members of these gene families are clustered at chromosome termini, a location that fosters recombination, which has been implicated in selective expression of MSG genes. To gain insight into the architecture, evolution, and regulation of these gene clusters, six telomeric segments of the genome were sequenced. Each of the segments began with one or more unique genes, after which were members of different gene families, arranged in a head-to-tail array. The three-gene repeat PRT1-MSR-MSG was common, suggesting that duplications of these repeats have contributed to expansion of all three families. However, members of a gene family in an array were no more similar to one another than to members in other arrays, indicating rapid divergence after duplication. The intergenic spacers were more conserved than the genes and contained sequence motifs also present in subtelomeres, which in other species have been implicated in gene expression and recombination. Long mononucleotide tracts were present in some MSR genes. These unstable sequences can be expected to suffer frequent frameshift mutations, providing P. carinii with another mechanism to generate antigen variation.


Asunto(s)
Genes Fúngicos , Pneumocystis carinii/genética , Telómero/genética , Secuencia de Aminoácidos , Antígenos Fúngicos , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Fúngicos , Clonación Molecular , Cósmidos , ADN de Hongos , Evolución Molecular , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Biblioteca de Genes , Ligamiento Genético , Genoma Fúngico , Sistemas de Lectura Abierta , ARN Mensajero/genética , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Selección Genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
6.
Virology ; 462-463: 218-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24999046

RESUMEN

Ectromelia virus (ECTV) is the causative agent of mousepox, a disease of laboratory mouse colonies and an excellent model for human smallpox. We report the genome sequence of two isolates from outbreaks in laboratory mouse colonies in the USA in 1995 and 1999: ECTV-Naval and ECTV-Cornell, respectively. The genome of ECTV-Naval and ECTV-Cornell was sequenced by the 454-Roche technology. The ECTV-Naval genome was also sequenced by the Sanger and Illumina technologies in order to evaluate these technologies for poxvirus genome sequencing. Genomic comparisons revealed that ECTV-Naval and ECTV-Cornell correspond to the same virus isolated from independent outbreaks. Both ECTV-Naval and ECTV-Cornell are extremely virulent in susceptible BALB/c mice, similar to ECTV-Moscow. This is consistent with the ECTV-Naval genome sharing 98.2% DNA sequence identity with that of ECTV-Moscow, and indicates that the genetic differences with ECTV-Moscow do not affect the virulence of ECTV-Naval in the mousepox model of footpad infection.


Asunto(s)
ADN Viral/química , ADN Viral/genética , Brotes de Enfermedades , Virus de la Ectromelia/genética , Ectromelia Infecciosa/epidemiología , Ectromelia Infecciosa/virología , Genoma Viral , Animales , Virus de la Ectromelia/aislamiento & purificación , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Estados Unidos/epidemiología
7.
Genome Res ; 19(1): 12-23, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19047519

RESUMEN

Pseudomonas aeruginosa isolates have a highly conserved core genome representing up to 90% of the total genomic sequence with additional variable accessory genes, many of which are found in genomic islands or islets. The identification of the Liverpool Epidemic Strain (LES) in a children's cystic fibrosis (CF) unit in 1996 and its subsequent observation in several centers in the United Kingdom challenged the previous widespread assumption that CF patients acquire only unique strains of P. aeruginosa from the environment. To learn about the forces that shaped the development of this important epidemic strain, the genome of the earliest archived LES isolate, LESB58, was sequenced. The sequence revealed the presence of many large genomic islands, including five prophage clusters, one defective (pyocin) prophage cluster, and five non-phage islands. To determine the role of these clusters, an unbiased signature tagged mutagenesis study was performed, followed by selection in the chronic rat lung infection model. Forty-seven mutants were identified by sequencing, including mutants in several genes known to be involved in Pseudomonas infection. Furthermore, genes from four prophage clusters and one genomic island were identified and in direct competition studies with the parent isolate; four were demonstrated to strongly impact on competitiveness in the chronic rat lung infection model. This strongly indicates that enhanced in vivo competitiveness is a major driver for maintenance and diversifying selection of these genomic prophage genes.


Asunto(s)
Profagos/genética , Infecciones por Pseudomonas/microbiología , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/virología , Animales , Brotes de Enfermedades , Farmacorresistencia Bacteriana/genética , Inglaterra/epidemiología , Proteínas Fimbrias/genética , Genes Bacterianos , Genes Virales , Genoma Bacteriano , Humanos , Familia de Multigenes , Mutagénesis , Antígenos O/genética , Profagos/aislamiento & purificación , Profagos/patogenicidad , Infecciones por Pseudomonas/epidemiología , Fagos Pseudomonas/aislamiento & purificación , Fagos Pseudomonas/patogenicidad , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Ratas , Virulencia/genética
8.
Genome Biol ; 10(5): R51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19432983

RESUMEN

BACKGROUND: Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. RESULTS: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. CONCLUSIONS: P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.


Asunto(s)
Ecosistema , Genoma Bacteriano , Plantas/microbiología , Pseudomonas fluorescens/genética , Plantas/metabolismo , Pseudomonas fluorescens/clasificación , Pseudomonas fluorescens/metabolismo
9.
PLoS One ; 3(10): e3527, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18953401

RESUMEN

Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.


Asunto(s)
Secuencia Conservada , Telómero/genética , Sitio de Iniciación de la Transcripción/fisiología , Trypanosoma brucei brucei/genética , Animales , Variación Antigénica/genética , Línea Celular , Mapeo Cromosómico , Clonación Molecular , Regulación de la Expresión Génica , Silenciador del Gen , Interacciones Huésped-Parásitos/genética , Filogenia , Análisis de Secuencia de ADN , Lugares Marcados de Secuencia , Trypanosoma brucei brucei/fisiología
10.
ISME J ; 1(4): 331-40, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18043644

RESUMEN

The plasmid pQBR103 was found within Pseudomonas populations colonizing the leaf and root surfaces of sugar beet plants growing at Wytham, Oxfordshire, UK. At 425 kb it is the largest self-transmissible plasmid yet sequenced from the phytosphere. It is known to enhance the competitive fitness of its host, and parts of the plasmid are known to be actively transcribed in the plant environment. Analysis of the complete sequence of this plasmid predicts a coding sequence (CDS)-rich genome containing 478 CDSs and an exceptional degree of genetic novelty; 80% of predicted coding sequences cannot be ascribed a function and 60% are orphans. Of those to which function could be assigned, 40% bore greatest similarity to sequences from Pseudomonas spp, and the majority of the remainder showed similarity to other gamma-proteobacterial genera and plasmids. pQBR103 has identifiable regions presumed responsible for replication and partitioning, but despite being tra+ lacks the full complement of any previously described conjugal transfer functions. The DNA sequence provided few insights into the functional significance of plant-induced transcriptional regions, but suggests that 14% of CDSs may be expressed (11 CDSs with functional annotation and 54 without), further highlighting the ecological importance of these novel CDSs. Comparative analysis indicates that pQBR103 shares significant regions of sequence with other plasmids isolated from sugar beet plants grown at the same geographic location. These plasmid sequences indicate there is more novelty in the mobile DNA pool accessible to phytosphere pseudomonas than is currently appreciated or understood.


Asunto(s)
Plásmidos/genética , Pseudomonas/genética , Beta vulgaris/microbiología , Datos de Secuencia Molecular , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Homología de Secuencia de Ácido Nucleico
11.
Genome Res ; 16(9): 1119-25, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16902086

RESUMEN

Toxoplasma gondii is a globally distributed protozoan parasite that can infect virtually all warm-blooded animals and humans. Despite the existence of a sexual phase in the life cycle, T. gondii has an unusual population structure dominated by three clonal lineages that predominate in North America and Europe, (Types I, II, and III). These lineages were founded by common ancestors approximately10,000 yr ago. The recent origin and widespread distribution of the clonal lineages is attributed to the circumvention of the sexual cycle by a new mode of transmission-asexual transmission between intermediate hosts. Asexual transmission appears to be multigenic and although the specific genes mediating this trait are unknown, it is predicted that all members of the clonal lineages should share the same alleles. Genetic mapping studies suggested that chromosome Ia was unusually monomorphic compared with the rest of the genome. To investigate this further, we sequenced chromosome Ia and chromosome Ib in the Type I strain, RH, and the Type II strain, ME49. Comparative genome analyses of the two chromosomal sequences revealed that the same copy of chromosome Ia was inherited in each lineage, whereas chromosome Ib maintained the same high frequency of between-strain polymorphism as the rest of the genome. Sampling of chromosome Ia sequence in seven additional representative strains from the three clonal lineages supports a monomorphic inheritance, which is unique within the genome. Taken together, our observations implicate a specific combination of alleles on chromosome Ia in the recent origin and widespread success of the clonal lineages of T. gondii.


Asunto(s)
Cromosomas , Evolución Molecular , Toxoplasma/genética , Animales , Cruzamientos Genéticos , Variación Genética , Genética de Población , Patrón de Herencia , Meiosis , Datos de Secuencia Molecular , Recombinación Genética , Toxoplasma/clasificación
12.
Science ; 309(5731): 131-3, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15994557

RESUMEN

Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.


Asunto(s)
Genoma de Protozoos , Proteínas Protozoarias/genética , Theileria annulata/genética , Theileria parva/genética , Secuencias de Aminoácidos , Animales , Bovinos , Proliferación Celular , Mapeo Cromosómico , Cromosomas/genética , Secuencia Conservada , Genes Protozoarios , Estadios del Ciclo de Vida , Metabolismo de los Lípidos , Linfocitos/citología , Linfocitos/parasitología , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Señales de Clasificación de Proteína/genética , Estructura Terciaria de Proteína , Proteoma , Proteínas Protozoarias/química , Proteínas Protozoarias/fisiología , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía , Telómero/genética , Theileria annulata/crecimiento & desarrollo , Theileria annulata/inmunología , Theileria annulata/patogenicidad , Theileria parva/crecimiento & desarrollo , Theileria parva/inmunología , Theileria parva/patogenicidad
13.
Fungal Genet Biol ; 41(4): 443-53, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14998527

RESUMEN

Aspergillus fumigatus is the most ubiquitous opportunistic filamentous fungal pathogen of human. As an initial step toward sequencing the entire genome of A. fumigatus, which is estimated to be approximately 30 Mb in size, we have sequenced a 922 kb region, contained within 16 overlapping bacterial artificial chromosome (BAC) clones. Fifty-four percent of the DNA is predicted to be coding with 341 putative protein coding genes. Functional classification of the proteins showed the presence of a higher proportion of enzymes and membrane transporters when compared to those of Saccharomyces cerevisiae. In addition to the nitrate assimilation gene cluster, the quinate utilisation gene cluster is also present on this 922 kb genomic sequence. We observed large scale synteny between A. fumigatus and Aspergillus nidulans by comparing this sequence to the A. nidulans genetic map of linkage group VIII.


Asunto(s)
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Genoma Fúngico , Nitratos/metabolismo , Aspergillus nidulans/genética , Cromosomas Artificiales Bacterianos , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , ADN Intergénico , Enzimas/genética , Enzimas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Orden Génico , Genómica , Intrones , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Datos de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Ácido Quínico/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA